Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-08T14:33:19.904Z Has data issue: false hasContentIssue false

Effect of Near-Interface Concentration Change on Barrier Height in Ion-Bombarded and Heat-Treated GaAs Schottky Contacts

Published online by Cambridge University Press:  25 February 2011

ZS. J. Horváth*
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, Budapest, P.O. Box 76. H-1325, Hungary
Get access

Abstract

The change of the doping concentration (including type) near the metal-semiconductor interface influences the Schottky barrier height (BH). In many cases this phenomenon is apparently spontaneous, or it is a side effect of the technology. The goal of this paper is to summarize the effect of the near-interface concentration change on the apparent and real Schottky BHs, and to demonstrate its importance with experimental results obtained in GaAs Schottky contacts. The question of the definition of the real BH for some of these structures is also treated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. Ohdomari, I. and Tu, K. N., J. Appl. Phys. 51, 3735 (1980).Google Scholar
2. Freeouf, J. L., Jackson, T. N., Laux, S. E., and Woodall, J. M., J. Vac. Sci. Technol. 21, 570 (1982).CrossRefGoogle Scholar
3. Sullivan, J. P., Tung, R. T., Pinto, M. R., and Graham, W. R., J. Appl. Phys. 70, 7403 (1991).Google Scholar
4. Lubberts, G., Burkey, B. C., Bücher, H. K., and Wolf, E. L., J. Appl. Phys. 45, 2180 (1974).Google Scholar
5. Shannon, J. M., Appl. Phys. Lett. 24, 396 (1974).Google Scholar
6. Shannon, J. M., Appl. Phys. Lett. 25, 75 (1974).Google Scholar
7. Shannon, J. M., Solid-State Electron. 19, 537 (1976).Google Scholar
8. Wu, C. -Y., J. Appl. Phys. 51, 4919 (1980).Google Scholar
9. Roy, S. B. and Daw, A. N., Solid-State Electron. 23, 949 (1980).CrossRefGoogle Scholar
10. Wu, C. -Y., Solid-State Electron. 24, 857 (1981).Google Scholar
11. Roy, S. B. and Daw, A. N., Solid-State Electron. 25, 169 (1982).CrossRefGoogle Scholar
12. Pan, S. and Mo, D., Chin. J. Semicond. 5, 88 (1984).Google Scholar
13. Shenai, K., Sangiorgi, E., Swanson, R. M., Saraswat, K. C., and Dutton, R. W., IEEE Trans. Eiectron Dev. ED–32, 793, (1985).Google Scholar
14. Schwartz, G. P. and Gualtieri, G. J., J. Electrochem. Soc. 133, 1266, (1986).Google Scholar
15. Eglash, S. J., Newman, N., Pan, S., Mo, D., Shenai, K., Spicer, W. E., Ponce, F. A., and Collins, D. M., J. Appl. Phys. 61, 5159 (1987).Google Scholar
16. Zhang, L. C., Liang, C. L., Cheung, S. K., and Cheung, N. W., J. Vac. Sci. Technol. B5, 1716 (1987).Google Scholar
17. Kim, J. H., Li, S. S., and Figueroa, L., Electron. Lett. 24, 689 (1988).Google Scholar
18. Han, C. C., Marshall, E. D., Fang, F., Wang, L. C., Lau, S. S., and Voreades, D., J. Vac. Sci. Technol. B6, 1662, (1988).Google Scholar
19. Eizenberg, M., Callegari, A. C., Sadana, D. K., Hovel, H. J., and Jackson, T. N., Appl. Phys. Lett. 54, 1696, (1989).Google Scholar
20. Pearton, S. J., Ren, F., Abernathy, C. R., Hobson, W. S., Chu, S. N. G., and Kovalchick, J., Appl. Phys. Lett., 55, 1342, (1989).Google Scholar
21. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981) Chap. 5.Google Scholar
22. Horváth, Zs. J., Proc. Int. Conif. Microelectronics, Warsaw, Sept. 21–23, 1992, (SPIE Proc. WA92, Bellingham, WA, USA, 1992) (in press).Google Scholar
23. Horváth, Zs. J., presented at the 1992 MRS Spring Meeting, San Francisco, CA, USA, 1992.Google Scholar
24. Horváth, Zs. J., J. Appl. Phys. 64, 6780.(1988).Google Scholar
25. Cowley, A. M. and Sze, S. M., J. Appl. Phys. 36, 3212 (1965).CrossRefGoogle Scholar
26. Wu, C. -Y., J. Appl. Phys. 51, 3786 (1980).CrossRefGoogle Scholar
27. Szatkowski, J. and Sieranski, K., Solid-State Electron. 31, 257 (1988).Google Scholar
28. Rhoderick, E. H., Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1978).Google Scholar
29. Horváth, Zs. J., Appl. Phys. Lett. 54, 931, (1989).Google Scholar
30. Lu, G. N., Barret, C., and Nefatti, T., Revue Phys. Appl., 22, 1169 (1987).Google Scholar
31. Lu, G. N., Barret, C., and Nefatti, T., Solid-State Electron., 33, 1 (1990).Google Scholar
32. Horváth, Zs. J., J. Appl. Phys. 64, 443, (1988).Google Scholar
33. Horváth, Zs. J., Proc. 19th Int. Coni, on Physics of Semiconductors, Aug. 15–19, 1988, Warsaw, Poland, edited by Zawadzki, W. (Institute of Physics, Polish Academy of Sciences, 1988) pp. 677680.Google Scholar
34. Horváth, Zs. J., Németh-Sallay, M., Pécz, B., and Jároli, E., Crystal Properties & Preparation 19–20, 299, (1989).Google Scholar
35. Horváth, Zs. J., Gyúró, I., Németh-Sallay, M., and Tüttö, P., Vacuum 40, 201, (1990).Google Scholar
36. Ashok, S. and Giewont, K., Jap. J. Appl Phys. 24, L533, (1985).Google Scholar
37. McLean, A. B. and Williams, R. H., Semicond. Sci. Technol. 2, 654 (1987).Google Scholar
38. Neffati, T., Lu, G. N., and Barret, C., Solid-State Electron. 31, 1335 (1988).CrossRefGoogle Scholar
39. Balasubramanian, N. and Subrahmanyam, A., Semicond. Sci. Technol., 5, 871 (1990).Google Scholar
40. Ashok, S., Wang, Y. G., and Nakagawa, O. S., Appl. Phys. Lett. 57, 1560 (1990).Google Scholar
41. Horváth, Zs. J. (unpublished).Google Scholar
42. Tavendale, A. J., Pearton, S. J., Williams, A. A., Alexiev, D., Appl. Phys. Lett. 56, 1457 (1990).Google Scholar
43. Wang, Y. G. and Ashok, S., J. Appl. Phys. 65, 2371 (1989).Google Scholar
44. Yeh, L. L. -M., Xie, Y. -J., and Holloway, P. H., J. Appl. Phys. 65, 3568 (1989).Google Scholar
45. Horváth, Zs. J., Pécz, B., Tüttö, P., Jároli, E., Németh-Sallay, M., and Gyúró, I., Crystal Properties & Preparation 12, 273, (1987).Google Scholar
46. Jároli, E., Pécz, B., Gyulai, J., Fried, M., Petrás, L., Zsoldos, É., Lohner, T. and Mojzes, I., Nucl. Instrum. Methods B19/20, 767 (1987).Google Scholar
47. Horváth, Zs. J., Pécz, B. and Jároli, E., in Energy Pulse and Particle Beam Modification of Materials, edited by Hennig, K. (Akademie-Verlag, Berlin, 1988) pp. 360362.Google Scholar
48. Pécz, B., Radnóczi, G., Horváth, Zs. J., Barna, P. B., Jároli, E., and Gyulai, J., J. AppLPhys. 71, 3408 (1992).Google Scholar
49. Pécz, B., Radnóczi, G., Horváth, Zs. J., Barna, P. B., Jároli, E., and Gyulai, J., presented at the 1992 MRS Spring Meeting, San Francisco, CA, USA, 1992.Google Scholar
50. Faraone, L., Prasad, K., and Nassibian, A. G., Semicond. Sci. Technol. 5, 609 (1990).CrossRefGoogle Scholar
51. Konakova, R. V. (private communication).Google Scholar