Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:17:56.375Z Has data issue: false hasContentIssue false

Effect of Nanoscale Species on the Behavior of Polymer Nanocomposites Subjected to Laser Pulse Heating

Published online by Cambridge University Press:  21 December 2012

Stephen F. Bartolucci
Affiliation:
US Army Armaments Research Development and Engineering Center – Benét Laboratories, Watervliet, NY 12189, U.S.A.
Jeffrey Warrender
Affiliation:
US Army Armaments Research Development and Engineering Center – Benét Laboratories, Watervliet, NY 12189, U.S.A.
Karen Supan
Affiliation:
Norwich University, Department of Mechanical Engineering, Northfield, VT, 05663, U.S.A.
Jeffery Wiggins
Affiliation:
School of Polymers and High Performance Materials, University of Southern Mississippi, Hattiesburg, MS, 39406U.S.A.
Lawrence LaBeaud
Affiliation:
School of Polymers and High Performance Materials, University of Southern Mississippi, Hattiesburg, MS, 39406U.S.A.
Get access

Abstract

Polymers and polymer nanocomposites have been studied under conditions of extremely high heating rates. Traditionally, these materials have been examined by the flammability research community using methods which have heating rates on the order of 10 degrees C/min. In this study, we have examined how polypropylene-nanoclay (montmorillonite) and polypropylene-carbon nanotube nanocomposites behave subjected to heating rates on the order of one million degrees C/min when irradiated with a 1064 nm Nd-YAG variable pulse millisecond laser. Time-resolved temperature data and mass loss data was collected for each sample as well as post-mortem surface characterization using spectroscopy and electron microscopy. The analysis shows that the nanospecies are effective in providing a protective barrier that decreases the amount of degradation and mass loss to the underlying polymer material. The effect is clearly seen after irradiating with a single pulse and multiple pulses. A comparison between the performance of the nanoclay and carbon nanotube composites is given.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gilman, J.W., Jackson, C.L., Morgan, A.B., Harris, R., Manias, E., Giannelis, E.P., Wuthenow, M., Hilton, D., Phillips, S.H., Chem. Mater.;12(7):1866 (2000).10.1021/cm0001760CrossRefGoogle Scholar
Kashiwagi, T., Du, F., Winey, K.I., Groth, K.M., Shields, J.R., Bellayer, S.P., Kim, H., Douglas, J.F., Polymer 46, 471 (2005).10.1016/j.polymer.2004.10.087CrossRefGoogle Scholar
Bourbigot, S., Gilman, J.W., Wilkie, C.A., Polym. Degrad. Stab. 84, 483 (2004).10.1016/j.polymdegradstab.2004.01.006CrossRefGoogle Scholar
Jang, B. N., Costache, M., Wilkie, C.A., Polymer 46, 10678 (2005).10.1016/j.polymer.2005.08.085CrossRefGoogle Scholar
Costache, M. C., Heidecker, M.J., Manias, E., Camino, G., Frache, A., Beyer, G., Gupta, R.K., Wilkie, C.A., Polymer 48, 6532 (2007).10.1016/j.polymer.2007.08.059CrossRefGoogle Scholar
Costache, M. C., Wang, D., Heidecker, M.J., Manias, E., Wilkie, C.A., Polym. Adv. Tech. 17, 272 (2006).10.1002/pat.697CrossRefGoogle Scholar
Costache, M. C., Jiang, D.D., Wilkie, C.A., Polymer 46, 6947 (2005).10.1016/j.polymer.2005.05.084CrossRefGoogle Scholar
Lewin, M., Pearce, E.M., Levon, K., Mey-Marom, A., Zammarano, M., Wilkie, C.A., Jang, B.N., Polym. Adv. Tech. 17, 226 (2006).10.1002/pat.684CrossRefGoogle Scholar
Leszczynska, A., Njuguna, J., Pielichowski, K., Banerjee, J.R., Thermochim. Acta 453, 75 (2007).10.1016/j.tca.2006.11.002CrossRefGoogle Scholar
Leszczynska, A., Njuguna, J., Pielichowski, K., Banerjee, J.R., Thermochim. Acta 454, 1 (2007).10.1016/j.tca.2006.11.003CrossRefGoogle Scholar
Kashiwagi, T., Grulke, E., Hilding, J., Groth, K., Harris, R., Butler, K., Shields, J., Kharchenko, S., Douglas, J., Polymer 45, 4227 (2004).10.1016/j.polymer.2004.03.088CrossRefGoogle Scholar
Gao, F., Price, D., Milnes, G.J., Eling, B., Lindsay, C.I., McGrail, P.T., Anal, J.. Appl. Pyrol. 4041 217 (1997).10.1016/S0165-2370(97)00044-2CrossRefGoogle Scholar
Price, D., Milnes, G.J., Gao, F., Polym. Degrad. Stab. 54, 235 (1996).10.1016/S0141-3910(96)00048-1CrossRefGoogle Scholar
Kappes, R.S., Li, C., Butt, H-J., Gutmann, J.S., New Journal of Physics, 12, 083011 (2010).10.1088/1367-2630/12/8/083011CrossRefGoogle Scholar
Lan, T., Beyer, G., in Thermally Stable and Flame Retardant Polymer Nanocomposites, edited by Mittal, V. (Cambridge University Press, Cambridge, 2011), p174.Google Scholar