Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:48:56.175Z Has data issue: false hasContentIssue false

The Effect of Miscut Angle and Miscut Direction of Vicinal (001) SrTiO3 Substrates on The Domain Structure of Epitaxial SrRuO3 Thin Films

Published online by Cambridge University Press:  15 February 2011

Q. Gan
Affiliation:
Department, of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708
R. A. Rao
Affiliation:
Department, of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708
C.B Eom
Affiliation:
Department, of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708
Get access

Abstract

We have grown epitaxial thin films of isotropie metallic oxide SrRuC>3 on both exact and vicinal (001) SrTiO3 substrates with miscut angle (α) up to 5.0° and miscut direction (β) up to 37° away from the in-plane [010] axis. The effects of both α and β on the epitaxial growth and domain structure of epitaxial SrRuC>3 thin films were studied by x-ray diffraction and atomic force microscopy (AFM). On vicinal SrTiO3 substrates with a large miscut angle (α = 1.7°, 2.0°, 4.1°, and 5.0°) and miscut direction close to the [010] axis, single crystal epitaxial (110)° SrRuO3 thin films were obtained. [The superscript o refers to the Miller indices based on the orthorhombic unit cell.] Decreasing the substrate miscut angle or aligning the miscut direction close to the [110] axis (β = 45°) resulted in an increase of 90° domains in the plane. The films grown on vicinal substrates displayed a significant improvement in crystalline quality and in-plane epitaxial alignment as compared to the films grown on exact (001) SrTiO3 substrates. AFM revealed that as the miscut angle increased the growth mechanism changed from two dimensional nucleation to step flow growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lowndes, D. H., Zhen, X. Y., Zhu, S., Budai, J. D., and Warmack, R. J., Appl. Phys. Lett. 61, p. 852 (1992).Google Scholar
2. Schlom, D. G., Anselmetti, D., Bednorz, J. D., Broom, R., Catana, A., Frey, T., Gerber, Ch., Guntherodt, H. J., Lang, H. P., and Mannhart, J., Z. Phys. B. 86, p. 163 (1992).Google Scholar
3. Kwo, J., Fleming, R. M., Kao, H. L., Werder, D. J., and Chen, C. H., Appl. Phys. Lett. 60, p. 1905 (1992).Google Scholar
4. Eckstein, J. N., Bozovic, I., Schlom, D. G., and Harris, J. S. Jr, Appl. Phys. Lett. 57, p. 1049 (1990).Google Scholar
5. Fujita, J., Yoshitake, T., Satoh, T., Ichihashi, T., and Igarashi, H., IEEE Trans. Magn. 27, p. 1205 (1991).Google Scholar
6. Wasa, K., Haneda, Y., Satoh, T., Adachi, A., Hayashi, S., and Setsune, K., Jpn. J. Appl. Phys. 34, p. 5132 (1995).Google Scholar
7. Theis, C.D. and Schlom, D. G., Epitaxial Oxide Thin Films II. edited by Speck, J. S., Fork, D. K., Wolf, R. M., and Shiosaki, T. (Mater. Res. Soc. Proc. 401, Pittsburgh, PA 1996), p. 171.Google Scholar
8. Eom, C. B., Cava, R. J., Fleming, R. M., Phillips, J. M., van Dover, R. B., Marshall, J. H., Hsu, J. W. P., Krajewski, J. J., and Peck, W. F. Jr, Science 258, p. 1766 (1992).Google Scholar
9. Eom, C. B., van Dover, R. B., Phillips, J. M., Werder, D. J., Marshall, J. H., Chen, C. H., Cava, R. J., Fleming, R. M., Appl. Phy. Lett. 63, p. 2570 (1993).Google Scholar
10. Antognazza, L., Char, K., Geballe, T. H., King, L. L. H., Sleight, A. W., Appl. Phy. Lett., 63, p. 1005 (1993);Google Scholar
Domel, R., Jia, C. L., Competti, C., Ockenfuss, G., and Branginski, A. I., Supercond. Sci. Tech. 7, p. 277(1994)Google Scholar
11. Gan, Q., Rao, R. A., and Eom, C-B., Appl. Phys. Lett. 70, p. 1962(1997).Google Scholar
12. Rao, R. A., Gan, Q., and Eom, C-B., in preparation.Google Scholar