Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:05:31.435Z Has data issue: false hasContentIssue false

Effect of magnetic field on the formation of macroporous silicon: structural and optical properties

Published online by Cambridge University Press:  19 November 2013

E. E. Antunez
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, México.
J. O. Estevez
Affiliation:
Instituto de Física, B. Universidad Autónoma de Puebla, A.P. J-48, Puebla 72570, México.
J. Campos
Affiliation:
Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Morelos 62580, México.
M. A. Basurto
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, México.
V. Agarwal*
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, México.
Get access

Abstract

The conventional method to fabricate porous silicon with n-type substrates requires light assisted generation of holes used in the electrochemical reaction. Recently, two different methods have been proposed to fabricate some similar structures: Hall effect [1] and lateral electrical field [2]. Hall effect assisted etching involves the application of a perpendicular electric and magnetic field to achieve the concentration of holes at the HF/silicon interface to assist the electrochemical reaction, while the other involves the application of a lateral electrical field across the silicon wafer. In this work, the electrochemical etching of high resistivity n-type silicon wafers under the combined effect of magnetic and lateral electrical field to produce photoluminescent macroporous structures under dark conditions, is reported. A lateral gradient in pore sizes as well as in light emission is observed. Optical and structural properties were studied for their possible applications as a biosensor.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lin, J. C., Lee, P. W. and Tsai, W. C., J. Appl. Phys. Lett. 89, 121119 (2006).Google Scholar
Li, S. Q., Sudesh, T. L., Wijesinghe, L. and Blackwood, D. J., J. Adv. Mater. 20, 3165–3168 (2008).Google Scholar
Cullis, A. G., Canham, L. T. and Calcott, P. D. J., J. Appl. Phys. 82, 909 (1997).Google Scholar
Koshida, N. and Koyama, H., Jpn. J. Appl. Phys. Part 2 30, 1221 (1991).Google Scholar
Ouyang, H., Christophersen, M., and Fauchet, P. M., Phys. Stat. Sol. (A) 202, 8, 1396–1401 (2005).Google Scholar
Collins, B. E., Dancil, K. P. S., Abbi, G. and Sailor, M. J., Adv. Funct. Mater. 12, 187 (2002).Google Scholar
Khung, Y. L., Barritt, G. and Voelcker, N. H., Exp. Cell Res. 314, 789 (2008).Google Scholar
Clements, L. R., Wang, P.-Y., Harding, F., Tsai, W.-B., Thissen, H. and Voelcker, N. H., Phys. Status Solidi A 208, 1440 (2011).Google Scholar
Wang, P. Y., Clements, L. R., Thissen, H., Jane, A., Tsai, W. B. and Voelcker, N. H., Adv. Funct. Mater. 22, 3414–3423 (2012).Google Scholar