Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:35:37.896Z Has data issue: false hasContentIssue false

Effect of Magnetic Field on Critical Current Density in Bulk Superconducting Wires

Published online by Cambridge University Press:  28 February 2011

M. T. Lanagan
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
U. Balachandran
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
C. A. Youngdahl
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
J. T. Dusek
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
J. J. Picciolo
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
R. B. Poeppel
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Bulk YBa2Cu3O7‐x (YBCO) wires and tubes were fabricated by an extrusion technique. Critical current density (Jc) was measured as a function of applied magnetic field at 77 K and was found to decrease significantly in fields below 100 G. Jc was dependent on specimen geometry. In addition, when a concentric magnetic field was generated by passing a current though a copper wire, the external field from the wire could interfere constructively or destructively with the magnetic field produced by current in a YBCO tube. The change in electrical properties with magnetic field has been attributed to weak‐link behavior at the grain boundaries. Batch‐to‐batch differences in the field dependence of Jc imply the possibility of reducing the dependence by processing modifications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Peterson, R. L. and Ekin, J. W., Phys. Rev. B 31, 9848 (1988).Google Scholar
2 Goldschmidt, D., Phys. Rev. B 22, 2372 (1989).Google Scholar
3 Babcock, S. E. and Larbalestier, D. C., Appl. Phys. Lett. 55, 393 (1989).Google Scholar
4 Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C., J. Mater. Res., 4 248 (1989).Google Scholar
5 Goretta, K. C., Lanagan, M. T., Singh, J. P., Dusek, J. T., Balachandran, U., Dorris, S. E., and Poeppel, R. B., Mater. & Manufact. Process., 4, 163 (1989).Google Scholar
6 McHenry, M. E., Maley, M. P., and Willis, J. O., Phys. Rev. B.40, 2666, (1989).Google Scholar
7 Stephens, R. B., Cryogenics 22, 399 (1989).Google Scholar
8 Lanagan, M. T., Balachandran, U., Cao, M. T., Dorris, S. E., Dusek, J. T., Goretta, K. C., Poeppel, R. B., Singh, J. P., and Youngdahl, C. A., Proc. Workshop on High‐Tc Superconductivity, May 23‐25, 1989, Huntsville, AL.Google Scholar
9 Delayen, J. R. and Bohn, C. L., Phys. Rev. B 40, 5151 (1989).Google Scholar
10 Pienkowski, T., Kincaid, J., Lanagan, M. T., Poeppel, R. B., Dusek, J. T., Shi, D., and Goretta, K. C., Proc. Wire and Cable Symp., 24, Nov. 15‐17, 1988, Reno, NV.Google Scholar