Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T18:43:33.543Z Has data issue: false hasContentIssue false

Effect of ion Bombardment in Polymer Surface Modification: Comparison of Pulsed High Frequency Plasma and ion Beam

Published online by Cambridge University Press:  10 February 2011

O. Zabeida
Affiliation:
Groupe des Couches Minces and Engineering Physics Department, Ecole Polytechnique, Montreal, H3C 3A7 Canada.
J. E. Klemberg-Sapieha
Affiliation:
Groupe des Couches Minces and Engineering Physics Department, Ecole Polytechnique, Montreal, H3C 3A7 Canada.
L. Martinu
Affiliation:
Groupe des Couches Minces and Engineering Physics Department, Ecole Polytechnique, Montreal, H3C 3A7 Canada.
D. Morton
Affiliation:
Denton Vacuum LLC, Moorestown, NJ 08057.
Get access

Abstract

The energy and the flux of impinging ions are important factors which determine the properties of deposited films and of exposed surfaces (microstructure, density, hardness, roughness, stress, chemical structure, adhesion etc.). In the present work, we use a multigrid retarding field analyzer to study ion bombardment characteristics in two different systems: a pulsed microwave plasma reactor, and a cold cathode ion source. We have found that the ion energy distribution functions (IEDF) possess specific features for each mode of operation: we evaluate the shape and the maximum and the mean ion energies of the IEDF for different gases such as Ar and N2. These ion characteristics are correlated with surface restructuring of differently treated polymers (polycarbonate and polyethylene terephthalate), analyzed by XPS.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kay, E. and Rossnagel, S.M., in Handbook of Ion Beam Processing Technology,edited by Cuomo, J. J., Rossnagel, S. M., and Kaufman, H. R. (Noyes Publications, Park Ridge, NJ, 1989), p.170.Google Scholar
2. Rossnagel, S. M., Cuomo, J. J., and Westwood, W. D., eds., Handbook of Plasma Processing Technology(Noyes Publications, Park Ridge, NJ, 1989).Google Scholar
3. Martinu, L., Klemberg-Sapieha, J. E., KMttel, O. M., Raveh, A., and Wertheimer, M R., J. Vac. Sci. Technol. A 12, 1360 (1994).Google Scholar
4. Wertheimer, M. R., Martinu, L., and Moisan, M., in Plasma Processing of Polymers,edited by d'Agostino, R., Fracassi, F., and Favia, P. (Kluwer Academic Publishers, Dordrecht, 1997), p. 101.Google Scholar
5. Liston, E. M., Martinu, L., and Wertheimer, M. R., J. Adhesion Sci. Technol. 7, 1091 (1993).Google Scholar
6. Martinu, L., in ref 4, p. 247.Google Scholar
7. Klemberg-Sapieha, J. E., Kuttel, O. M., Martinu, L., and Wertheimer, M. R., Thin Solid Films 193/194, 965 1990).Google Scholar
8. Denton, P. R., Lee, J., and Musset, A., Proc. Ann. Tech. Meeting (Society of Vacuum Coaters, Albuquerque, 1985), p.53.Google Scholar
9. Zabeida, O., Klemberg-Sapieha, J. E., and Martinu, L., Proc. Ann. Tech. Meeting (Society of Vacuum Coaters, Albuquerque, 1998) p.336.Google Scholar
10. Zabeida, O. and Martinu, L., J. Appl. Phys., submitted.Google Scholar
11. Klemberg-Sapieha, J. E., Poitras, D., Martinu, L., Yamasaki, N. L. S., and Lantman, C. W., J. Vac. Sci. Technol. A 15, 985 (1997).Google Scholar
12. Charles, C. and Boswell, R. W., J. Appl. Phys. 78, 766 (1995).Google Scholar