Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:22:15.623Z Has data issue: false hasContentIssue false

The Effect of Interfacial Chemistry on Metal Ion Penetration into Polymeric Films

Published online by Cambridge University Press:  11 February 2011

Anupama Mallikarjunan
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy NY 12180, USA
Jasbir Juneja
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy NY 12180, USA
Guangrong Yang
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy NY 12180, USA
Shyam P. Murarka
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy NY 12180, USA
Toh-Ming Lu
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy NY 12180, USA
Get access

Abstract

In order to boost the performance of next-generation silicon integrated circuits, polymers with lower dielectric constant compared to silicon dioxide are required as interlayer dielectrics (ILDs). Ion penetration from surrounding interconnect metal (typically copper or aluminum) or from barrier materials (e.g., tantalum or tantalum nitride) under thermal and electrical stresses can lead to premature failure of the polymers. Hence, ion penetration was studied in hybrid organosiloxane polymer (HOSP) using bias-temperature stressing. Metal/polymer interface chemistry, particularly the presence of interfacial oxygen, was found to play a key role in aiding metal ionization, and subsequent mobile ion penetration into dielectrics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. SIA International Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, 1999).(http://www.semichips.org)Google Scholar
2. Schroder, D. K., Semiconductor Material and Device Characterization 2nd ed. (Wiley-Interscience, New York, 1998) pp.365–8.Google Scholar
3. Hillen, M. W. and Verwey, J. F., Instabilities in Silicon Devices, Volume I, ed. Barbottin, G. and Vapaille, A., (North Holland Elsevier Science Publishers, Netherlands, 1986), p. 416.Google Scholar
4. Loke, A. L. S., Wetzel, J., Townsend, P., Tanabe, T., Vrtis, R., Zussman, M., Kumar, D., Ryu, C., and Wong, S., IEEE Trans. Electron Devices 46, 2178 (1999).CrossRefGoogle Scholar
5. Mallikarjunan, A., Murarka, S. P., and Lu, T.-M., Appl. Phys. Lett. 79, 1855 (2001).CrossRefGoogle Scholar
6. Mallikarjunan, A., Murarka, S. P. and Lu, T.-M., J. Electrochem. Soc. 149, F155 (2002).CrossRefGoogle Scholar
7. Mallikarjunan, A., Yang, G.-R., Murarka, S. P. and Lu, T.-M., J. Vac. Sci. Technol. B 20, 1884 (2002).CrossRefGoogle Scholar
8. Murarka, S. P., Metallization: Theory and Practice for VLSI and ULSI (Butterworth-Heinemann, 1993), pp. 190230.Google Scholar
9. Kapila, D. and Plawsky, J. L., Chem. Eng. Sci. 50, 2589 (1995).CrossRefGoogle Scholar
10. Rogojevic, S., Jain, A., Gill, W., and Plawsky, J. L., J. Electrochem. Soc. 149, F122 (2002).CrossRefGoogle Scholar
11. Fukuda, T., Nishino, H., Matsuura, A., and Matsunaga, H., Jpn. J. Appl. Phys. 41, L537 (2002).CrossRefGoogle Scholar