Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T20:19:21.894Z Has data issue: false hasContentIssue false

The Effect of Hydrogen Peroxide Concentration on the Oxidative Dissolution of Unirradiated Uranium Dioxide

Published online by Cambridge University Press:  21 March 2011

J. De Pablo
Affiliation:
Chemical Engineering Department, Universitat Politècnica de Catalunya, 08028 Barcelona., Spain
I. Casas
Affiliation:
Chemical Engineering Department, Universitat Politècnica de Catalunya, 08028 Barcelona., Spain
F. Clarens
Affiliation:
Chemical Engineering Department, Universitat Politècnica de Catalunya, 08028 Barcelona., Spain
F. El Aamrani
Affiliation:
Chemical Engineering Department, Universitat Politècnica de Catalunya, 08028 Barcelona., Spain
M. Rovira
Affiliation:
Chemical Engineering Department, Universitat Politècnica de Catalunya, 08028 Barcelona., Spain
Get access

Abstract

The dissolution rate of unirradiated uranium dioxide was studied in batch experiments as a function of hydrogen peroxide concentration (from 10−5 to 10−3 mol dm−3). Unirradiated UO2(s) was used in order to differentiate surface chemical processes from radiolytic effects. Dissolution rates were determined from both uranium release and hydrogen peroxide consumption. Results showed that H2O2consumption rate was higher than UO2 dissolution rate. This observation may indicate that the overall UO2 oxidative dissolution process would be controlled by the dissolution of the oxidized solid surface. The calculated hydrogen peroxide reaction order was 1 in the H2O2 concentration range from 10−5 to 10−4 mol dm−3, while at higher concentrations no clear dependence was observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eriksen, T., Ekulnd, U.B., Werme, L. and Bruno, J., J. of Nucl. Mat. 227, 7682 (1995).Google Scholar
2. Grambow, B., Loida, A., Dressier, P., Geckeis, H., Gago, J., Casas, I., Pablo, J. de, Giménez, J. and Torrero, M.E., Chemical reaction of fabricated and high burn-up spent UO2 fuel with saline brines, European Comission, Final Report EUR 17111 (1997) pp 166 Google Scholar
3. Gray, W.J and Steward, S.A., J. Nucl. Mater. 190, 46 (1992).Google Scholar
4. Gray, W.J. and Wilson, C.N., (1995) Spent fuel dissolution studies: FY 1991 to 1994. Report PNL-10540 (USA).Google Scholar
5. Torrero, M. E., Baraj, E., Pablo, J. de, Giménez, J. and Casas, I., Int. J. Chem. Kinetic 29, 261267 (1997)Google Scholar
6. Shoesmith, D. W. and Sunder, S., J. of Nucl. Mat. 190, 2035 (1992).Google Scholar
7. Pablo, J. de, Casas, I., Gimenez, J., Molera, M., Rovira, M., Duro, L. and Bruno, J., Geochim. et Cosmochim. Acta 63, 30973103 (1999)Google Scholar
8. Hiskey, J.B., Trans. Inst. Nin. Metall. Sect. C, 88, C145 (1979).Google Scholar
9. Giménez, J., Baraj, E., Torrero, M.E., Casas, I. and Pablo, J. de, J. Nucl. Mater. 238, 6469 (1996).Google Scholar
10. Diaz-Arocas, P., Quiñones, J., Maffiotte, C., Serrano, J., Garcia, J., Almazán, J.R. and Esteban, J. in Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R.C. (Mat. Res. Soc. Symp. Ser. 353, Pittsburg, PA 1995) pp. 641646.Google Scholar
11. Robbins, J.C., Can. Inst. Min. Metall. Bull. 71, 61 (1978).Google Scholar
12. Price, D., Worsfold, P. J. and Montoura, R. F. C., Anal. Chim. Acta 298, 121128 (1994)Google Scholar
13. Shoesmith, D.W., Sunder, S., Mailey, M.G. and Wallace, G.J., Corrosion Science 29, 1115 (1989).Google Scholar
14. Grenthe, I., Fuger, J., R.J.M. Konings, Lemire, R.J., Muller, A.B., Nguyen-Trung, C. and Wanner, H.: Chemical Thermodynamics of Uranium (eds. Wanner, H. and Forest, I.). Elsevier Sci. Publishers, Amsterdam 1992.Google Scholar
15. Bruno, J., Casas, I., Cera, E., Pablo, J. de, Giménez, J. and Torrero, M.E. in Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R.C. (Mat. Res. Soc. Symp. Ser. 353, Pittsburg, PA 1995) pp. 601608.Google Scholar
16. Sunder, S., Shoesmith, D.W., Lemire, R.J., Bailey, M.G. and Wallace, G.J., Corros. Sci. 32, 373386 (1991).Google Scholar
17. Bruno, J., Cera, E., Duro, L., Pon, J., Pablo, J. de and Eriksen, T., Development of a kinetic model for the dissolution of the UO2 spent nuclear fuel, SKB TR-98-22, pp 49 (1998)Google Scholar
18. Salem, I. A., Elhag, R. I. and Khalil, K.M.S., Transition Metal Chemistry 25, 260264 (2000)Google Scholar
19. Andreozzi, R., Caprio, V., Insola, A. and Marotta, R., Catalysis Today 53, 5159 (1999)Google Scholar