Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T10:45:31.949Z Has data issue: false hasContentIssue false

The Effect of Hydrogen Content on Ion Beam Mixing

Published online by Cambridge University Press:  25 February 2011

R. E. Wistrom
Affiliation:
Department of Materials Science and Engineering, Bard Hall
P. Børgesen
Affiliation:
Department of Materials Science and Engineering, Bard Hall
H. H. Johnson
Affiliation:
Department of Materials Science and Engineering, Bard Hall
D. A. Lilienfeld
Affiliation:
National Nanofabrication Facility, Cornell University, Ithaca, NY 14853
Get access

Abstract

A qualitative study of ion beam mixing of multilayers has shown that the presence of hydrogen in the sample slows mixing considerably for Fe/Ti, and slightly for Ni/Ti. We have quantified this effect and extended the study to four more systems (Co/Ti, Pd/Ti, Ti/Cu, and Ti/Al) and to lower temperatures. The degree to which H charging reduced the mixing rate varied substantially with multilayer system. H was lost during mixing. H was lost fastest from those films for which the H effect was the smallest. Our data are consistent with a model that relates mixing inhibition to H-vacancy binding energy in the non-Ti component.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gaboriaud, R. J. and Nicolet, M.-A., Ann. Phys. 8, 563 (1983).CrossRefGoogle Scholar
2. Lilienfeld, D. A., Mayer, J. W., and Hung, L. S., MRS Bulletin 12 (2), 31 (1987).10.1557/S088376940006838XCrossRefGoogle Scholar
3. Johnson, W. L., Cheng, Y. T., Rossum, M. Van, and Nicolet, M.-A., Nucl. Instrum. Meth. B7/B8, 657 (1985).CrossRefGoogle Scholar
4. Paine, B. M. and Averback, R. S., Nucl. Instrum. Meth. B7/B8, 666 (1985).10.1016/0168-583X(85)90451-3CrossRefGoogle Scholar
5. Bøttiger, J., Nielsen, S. K., Whitlow, H. J., and Wriedt, P., Nucl. Instrum. Meth. 218, 684 (1983).CrossRefGoogle Scholar
6. Hirvonen, J. -P., Elve, M. A., Mayer, J. W., and Johnson, H. H., Mater. Sci. and Eng. 90, 13 (1987).CrossRefGoogle Scholar
7. Hirvonen, J. -P., Mayer, J. W., Nastasi, M., and Stone, D., Nucl. Instrum. Meth. B23, 487 (1987).CrossRefGoogle Scholar
8. Munn, P., and Wolf, G. K., Nucl. Instrum. Meth. B7/B8, 205 (1985).CrossRefGoogle Scholar
9. Follstaedt, D. M., Knapp, J. A., Pope, L. E., Yost, F. G., and Picraux, S. T., Appl. Phys. Lett. 45, 529 (1984).CrossRefGoogle Scholar
10. Singer, I. L. and Barlak, T. M., Appl. Phys. Lett. 43, 457 (1983).10.1063/1.94387CrossRefGoogle Scholar
11. Doyle, B. L. and Peercy, P. S., Appl. Phys. Lett. 34, 811 (1979).10.1063/1.90654CrossRefGoogle Scholar
12. Børgesen, P., Wistrom, R. E., Alford, T. L., Lilienfeld, D. A., and Johnson, H. H., to be published.Google Scholar
13. Børgesen, P., Wistrom, R. E., Lilienfeld, D. A., and Johnson, H. H., Submitted to J. Mater. Res. (1988).Google Scholar
14. Doolittle, L. R., Nucl. Instrum. Meth. B9, 344 (1985).CrossRefGoogle Scholar
15. Børgesen, P., Lilienfeld, D. A., Wistrom, R. E., and Johnson, H. H., these proceedings.Google Scholar
16. Workman, T. W., Cheng, Y. T., Johnson, W. L., and Nicolet, M.-A., Appl. Phy. Lett. 50, 1485 (1987).CrossRefGoogle Scholar
17. Peak, D. and Averback, R. S., Nucl. Instrum. Meth. B7/B8, 561 (1985).10.1016/0168-583X(85)90433-1CrossRefGoogle Scholar
18. Averback, R. S., Nucl. Instrum. Meth. B15, 675 (1986).10.1016/0168-583X(86)90391-5CrossRefGoogle Scholar
19. Myers, S. M., Wampler, W. R., Besenbacher, F., Robinson, S. L., and Moody, N. R., Mater. Sci. Eng. 69, 397 (1985).CrossRefGoogle Scholar