Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T00:51:14.439Z Has data issue: false hasContentIssue false

Effect of Heat Treatment Solution on the Size and Distribution of Gamma Prime (γ´) of Super-alloy INCONEL 738

Published online by Cambridge University Press:  31 January 2012

I. Guzmán
Affiliation:
Direccion de Ingenia y Materiales, Corporación Mexicana de Investigación en Materiales S.A de C.V. Calle Ciencia y Tecnología # 790, col. Saltillo 400, Cp 25290, Saltillo Coahuila, México. E-mail: [email protected]
A. Garza
Affiliation:
Direccion de Ingenia y Materiales, Corporación Mexicana de Investigación en Materiales S.A de C.V. Calle Ciencia y Tecnología # 790, col. Saltillo 400, Cp 25290, Saltillo Coahuila, México. E-mail: [email protected]
F. Garcia
Affiliation:
Direccion de Ingenia y Materiales, Corporación Mexicana de Investigación en Materiales S.A de C.V. Calle Ciencia y Tecnología # 790, col. Saltillo 400, Cp 25290, Saltillo Coahuila, México. E-mail: [email protected]
J. Acevedo
Affiliation:
Direccion de Ingenia y Materiales, Corporación Mexicana de Investigación en Materiales S.A de C.V. Calle Ciencia y Tecnología # 790, col. Saltillo 400, Cp 25290, Saltillo Coahuila, México. E-mail: [email protected]
R. Méndez
Affiliation:
Direccion de Ingenia y Materiales, Corporación Mexicana de Investigación en Materiales S.A de C.V. Calle Ciencia y Tecnología # 790, col. Saltillo 400, Cp 25290, Saltillo Coahuila, México. E-mail: [email protected]
Get access

Abstract

Nickel base superalloys, which are gamma prime γ‘(Ni3Al, Ti) precipitation strengthened, is largely responsible for the elevated-temperature strength of the material and the higher resistance to creep deformation. The amount of γ’ depends on the chemical composition and temperature, heat treatment, these alloy are widely used in hot sections of aero-engines, land based turbines, stator parts, nozzle guide vanes, blades and integral wheels, due to its excellent elevated temperature strength and hot corrosion resistance. The γ‘ size decreases not only by the high temperature of heat treatment solution (1120 °C), the cooling environment and cooling rate are important parameter to decrease γ’ size to 0.65 μm. This paper presents the effect of heat treatment solution in base nickel IN 738 superalloy under service conditions, on the size and morphology of the gamma phase γ’ Ni3 (Al, Ti), main phase in the nickel base superalloys. Also shown coarse carbide and precipitates gamma prime size distributed and improve interdentritic spacing in the matrix after heat treatment solution.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ojo, O. A., Shidu, R.K. and Chaturvedi, M.C., Microstructural Analysis of Laser-Beam-Welded, Directionally Solidified INCONEL 738, The minerals, metals & materials society and ASM international (2007).Google Scholar
2. Quested, P. N. and Osgerby, S., Mater Sci. Technology, 2, 461–75 (1986).Google Scholar
3. Scarlin, R. B.: Metall. Trans. 7A 4, 1535–1541 (1976).Google Scholar
4. Ross, E.W. and O’Hara, K.S.., Antolovich, S.D., Stusurd, R.W., MacKay, R.A., Anton, D.L., Khan, T., Kissinger, R.D., Klarstrom, D.L., Minerals, Metals & Materials Society (TMS), Warrendale, 257–65 (1992).Google Scholar
5. Duhl, D.N., In Superalloys 2, Sims, C.T., Stoloff, N.S., Hagel, W.C., Wiley-Interscience, NY, (1987), pp. 189–214.Google Scholar
6. Prager, M., Shira, C.S.. Welding Research Council Bulletin No. 128 (1968).Google Scholar
7. Ojo, O. A., Ding, R.G., and Chaturvedi, M.C., Scripta Materialia, 54, 2131–2136, (2006).Google Scholar
8. Jahnke, B.: Weld Journal Science, 11(61), 343s–347s (1982).Google Scholar
9. Su, C.Y., Chou, C.P., Wu, B.C., and Lih, W.C.: J. Mater. Eng. Performance, 6(5), 619–627 (1997).Google Scholar
10. Banerjee, K., Richards, N.L., and Chaturvedi, M.C., Metall. Mater. Trans. vol. 3, 6A, 1881–1890 (2005).Google Scholar
11. Sidhu, R.K., Richards, N.L., and Chaturvedi, M.C., Mater. Sci. Technol. 21, 1119–1131 (2005).Google Scholar
12. Decker, R. F., Strengthening mechanisms in nickel base superalloy. America Research laboratory the international Nickel Company. Presented at steel Strengthening mechanisms symposium, Zurich Switzerland 5–6 May (1969).Google Scholar
13. Gleiter, H., Metallk, Z., Interaction of the dislocation Particles, physical status Solidus 58, 306 (1965).Google Scholar
14. Shingal, L. K and Martin, J.W., Acta Materialia, 16, 947 (1968).Google Scholar
15. Doi, M., Miyazaki, T.. A new parameter for describing the structure bifurcation in two-phase alloys containing coherent particles . J. Materials Science, 27, 6291–6298 (1992).Google Scholar
16. Doi, M., Elasticity effects on the microstructure of alloys containing coherent Precipitates, Prog Material Science, 40–79, (1996).Google Scholar
17. Bhadeshia, H. K. D. H., Nickel Based Superalloys Vol. 1, (2009) pp. 1–12.Google Scholar
18. Betteridge, W., Arnold, Edward. The Nimonic Alloys, London (1959).Google Scholar
19. Guard, R.W. and Westbroook, J.H., Trans. Met, 215, 807 (1959).Google Scholar