Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T06:56:13.487Z Has data issue: false hasContentIssue false

The Effect of HCl on Silicon Point Defect Formation During Thermal Oxidatign of (100) Float Zone Silicon Wafers: A Theoretical Analysis

Published online by Cambridge University Press:  28 February 2011

Seajin Oh
Affiliation:
Departament of Materials Science and Engineering, Stanford University, Stanford, CA 94305
W.A. Tiller
Affiliation:
Departament of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Soo Kap Hahin
Affiliation:
Siltec Corporation, 423 National Avenue, Mountain View, CA 94043
Get access

Abstract

The effect of HCl in an oxidizing ambient on Si interstitial formation during oxidation has been studied by the buried marker diffusion technique. Adding HCl reduces the self-interstitial flux generated at the oxidation front but it does not completely eliminate it. A uniform blocking layer model predicts fairly well the Cl effect on self-interstitial generation during the thermal oxidation. By reducing the rigidity of the SiO2, Cl incorporation into the SiO2 is strongly proposed to alter the Si interstitial partition coefficient at the interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Craven, R.A., Semiconductor Silicon 1981, edited by Huff, H.R., Kriegler, R.J. and Takeishi, Y. (Electrochem. Soc. Proc. NY, 1981) p. 254.Google Scholar
2. Wang, P., Chang, L., Demer, L.J. and Varker, C.J., J. Electrochem. Soc. 131, 1948 (1984).Google Scholar
3. Nauka, N., Lagowdki, J. and Gatos, H.C., Impurity Diffusion and Gettering in Silicon, edited by Fair, R.B. and Pearce, C.W. (Materials Research Society, PA, 1985) vol 36, p. 175.Google Scholar
4. Tiller, W.A., J. ElectrodcFem. Soc. 127, 619, 625 (1980).Google Scholar
5. Oh, Seajin, Hahan, Sookap, and Tiller, W.A., Accepted for publication in Appl. Phys. Lett.Google Scholar
6. Hill, C., Semiconductor Silicon 1981, edited by Huff, H.R. and Kriegler, R.J., (Electrochem. Soc. Pennington, N.J. 1981) p. 988.Google Scholar
7. Fahay, P., Dutton, R.W. and Hu, S.M., Appl. Phys. Lett. 44, 777 (1984).Google Scholar
8. Fahey, P., Barbuscia, G., Moslehi, M., and Dutton, R.W., Appl Phys. Lett. 46, 784 (1985).Google Scholar
9. Antoniadis, D.A. and Moskowitz, I., J. Appl. Phys. 53, 6388 (1982).Google Scholar
10. Deal, B.E. and Grove, A.S., J. Appl. Phys. 36, 3770 (1965).Google Scholar
11. Hu, S.M., J. Appl. Phys. 45, 1567 (1975).Google Scholar
12. Tan, T.Y. and Gosele, U., Appl. Phys. Lett. 39, 86 (1981).CrossRefGoogle Scholar
13. Tiller, W.A., J. Electrochem. Soc. 128, 689 (1981).CrossRefGoogle Scholar
14. Tiller, W.A., J. Electrochem. Soc. 130, 501 (1983).Google Scholar
15. Tiller, W.A. and Hirth, J.P., to be published.Google Scholar
16. Hirth, J.P. and Tiller, W.A., J. Appl. Phys. 56, 947 (1984).Google Scholar
17. Nisse, E.P. Eer, Appl. Phys. Lett. 35, 8 (197).Google Scholar
18. Taft, E. and Cordes, L., J. ElectrocFiem. Soc. 126, 131 (1979).Google Scholar
19. Harrington, W.L., Honig, R.E., Goodman, A.M., and Williams, R., Appl. Phys. Lett. 27, 644 (1975).Google Scholar
20. Sigmon, T.W., Chu, W.K., Lugujjo, E., and Mayer, J.W., Appl. Phys. Lett. 24, 105 (1974).Google Scholar
21. Kriegler, R.J., Thin Solid Films, 13, 11 (1972).Google Scholar
22. Hetherington, G., Jack, K.H., and Kemmedy, J.C., Phys. Chem. Glasse, 5, 130 (1964).Google Scholar
23. Rouse, J.W., Helms, C.R., Deal, B.E., and Razouk, R.R., J. Electrochem. Soc. 131, 887 (1984).Google Scholar