Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:04:52.352Z Has data issue: false hasContentIssue false

The Effect of Growth Temperature on Atomic Ordering in Gao.5 2Ino.48P Epilayers Grown on GaAs (001) Substrates by GS-MBE

Published online by Cambridge University Press:  10 February 2011

C. Meenakarn
Affiliation:
Department of Materials, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BP, UK.
A. E. Staton-Bevan
Affiliation:
Department of Materials, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BP, UK.
M. D. Dawson
Affiliation:
Sharp Laboratories of Europe Ltd, Edmund Halley Road, Oxford Science Park, Oxford OX4 4GA, UK.
G. Duggan
Affiliation:
Sharp Laboratories of Europe Ltd, Edmund Halley Road, Oxford Science Park, Oxford OX4 4GA, UK.
A. H. Kean
Affiliation:
Sharp Laboratories of Europe Ltd, Edmund Halley Road, Oxford Science Park, Oxford OX4 4GA, UK.
S. P. Najda
Affiliation:
Sharp Laboratories of Europe Ltd, Edmund Halley Road, Oxford Science Park, Oxford OX4 4GA, UK.
Get access

Abstract

A Transmission Electron Microscopy (TEM), Photoluminescence (PL) and Photoluminescence Excitation Spectroscopy (PLE) investigation has been conducted on Ga0 52In0.48P epilayers, grown on GaAs(001) by Gas-Source Molecular Beam Epitaxy. Selected area diffraction in the TEM shows that epilayers grown at temperatures between 480°C and 535°C exhibit CuPt-type ordering with the antiphase domain size increasing with increasing growth temperature. PLE data shows that, in the temperature range 480°C to 535°C the band gap energy of Ga0.52In0-48P epilayers increases with increasing growth temperature from 1.971 to 2.003 (±0.001 eV). For high band gap optical data storage applications these values compare well with the highest band gap energies reported for epilayers grown by MOCVD.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kobayashi, K., Kawata, S., Gomyo, A., Hino, I. and Suzuki, T., Electron. Lett. 21, 931 (1985).Google Scholar
2. Ikeda, M., Mori, Y., Sato, H., Kaneko, K. and Watanabe, N., Appl. Phys. Lett. 47, 1027 (1985).Google Scholar
3. Ishikawa, M., Ohba, Y., Sugawara, H., Yamamoto, M. and Nakanisi, T., Appl. Phys. Lett. 48, 207 (1996).Google Scholar
4. Gomyo, A., Suzuki, T., Kobayashi, K., Kawata, S., Hino, I., and Yuasa, T., Appi. Phys. Lett. 50, 673 (1987).Google Scholar
5. Bellon, P., Chevalier, J.P., Martin, G.P., Dupont-Nivet, E., Thiebaut, C. and Andre, J.P., Appl. Phys. Lett. 52, 567 (1988).Google Scholar
6. Kondow, M., Kakibayashi, H. and Minagawa, S., J. Cryst. Growth 88, 291 (1988).Google Scholar
7. Blood, P., Bye, K.L. and Roberts, J.S., J. Appl. Phys. 51, 1790 (1980).Google Scholar
8. Kawamura, Y., Asahi, H. and Nagai, H., Jpn. J. Appl. Phys. 20, L807 (1981).Google Scholar
9. Hafich, M.J., Quigley, J.H., Owens, R.E., Robinson, G.Y., Li, D. and Otsuka, N., Appl. Phys. Lett. 54, 2686 (1989).Google Scholar
10. Gomyo, A., Kobayashi, K, Kawata, S., Hino, I., Suzuki, T. and Yuasa, Y., J. Cryst.Growth 77, 367 (1986).Google Scholar
11. Ohba, Y., Ishikawa, M., Sugawara, H., Yamamoto, M. and Nakanisi, T., J. Cryst. Growth 77, 374 (1996).Google Scholar
12. Andre, J.P. and Bellon, P., Mat. Res. So. Symp. Proc. 262, 835 (1992).Google Scholar
13 Schneider, R.P., Jr., Jones, E.D., Lott, J.A. and Bryan, R.P., J. Appl. Phys. 72, 5397 (1992).Google Scholar
14. Su, L.C., Pu, S.T., Stringfellow, G.B., Christen, J., Selber, H. and Bimberg, D., Appl. Phys. Lett. 62, 3496 (1993).Google Scholar
15. Zunger, A., Wagner, S. and Petroff, P.M., J. Electron. Mater. 22, 3 (1993).Google Scholar
16. Kondow, M., Kakibayashi, H., Minagawa, S., Inoue, Y., Nishino, T. and Hamakawa, Y., Appl. Phys. Lett. 53, 2053 (1988).Google Scholar
17. Kondow, M., Kakibayashi, H. and Minagawa, S., J. Cryst. Growth 93, 412 (1988).Google Scholar
18. Ueda, O., Takikawa, M., Komano, J. and Umebu, I., Jpn. J. Appl.. Phys. 26, L1824 (1987)Google Scholar
19. Su, L.C., Ho, I.H. and Stringfellow, G.B., J. Appl. Phys. 75, 5135 (1994).Google Scholar
20. McKernan, S., Carter, C.B., Bour, D.P. and Shealy, J.R., J. Mater. Res. 3, 406 (1988).Google Scholar
21. Yoshino, J., Iwamoto, T. and Kukimoto, H., J. Cryst. Growth 55, 74 (1981).Google Scholar
22. Baxter, C.S., Stobbs, W.M. and Wilkie, J.K., J. Cryst. Growth 112, 373 (1991).Google Scholar
23. Baxter, C.S. and Stobbs, W.M., Phil. Mag. A 69, 615 (1994).Google Scholar
24. Su, L.C., Ho, I.H. and Stringfellow, G.B., J. Cryst. Growth 146, 558 (1995).Google Scholar
25. Follstaedt, D.M., Schneider, R.P., Jr., and Jones, E.D., J. Appl. Phys. 77, 3077 (1995).Google Scholar
26. Dawson, M.D. and Duggan, G., Phys. Rev. B 47, 12598 (1993).Google Scholar
27. Liedenbaum, C.T.H.F., Valster, A., Severens, A.L.G.J. and Hooft, G.W.'t, Appl. Phys. Lett. 57, 2698 (1990).Google Scholar