Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:52:37.956Z Has data issue: false hasContentIssue false

Effect of Ge-rich Si1−zGez Segregation on the Morphological Stability of NiSi1−uGeu Film Formed on Strained (001) Si0.8Ge0.2 Epilayer

Published online by Cambridge University Press:  17 March 2011

H.B. Yao
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, Singapore, 117602
D.Z. Chi
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, Singapore, 117602
S. Tripathy
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, Singapore, 117602
S.Y. Chow
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, Singapore, 117602
W.D. Wang
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, Singapore, 117602
S. J. Chua
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, Singapore, 117602
H.P. Sun
Affiliation:
Department of Materials Science, University of Michigan, Ann Arbor, MI 48109-2136
X.Q. Pan
Affiliation:
Department of Materials Science, University of Michigan, Ann Arbor, MI 48109-2136
Get access

Abstract

The germanosilicidation of Ni on strained (001) Si0.8Ge0.2, particularly Ge segregation, grain boundary grooving, and surface morphology, during rapid thermal annealing (RTA) was studied. High-resolution cross-sectional transmission electron microscopy (HRXTEM) suggested that Ge-rich Si1−zGez segregation takes place preferentially at the germanosilicide/Si1−xGex interface, more specifically at the triple junctions between two adjacent NiSi1−uGeu grains and the underlying epi Si1−xGex, and it is accompanied with thermal grooving process. The segregation process accelerates the thermal grooving of NiSi1−uGeu grain boundaries at the interface. The segregation-accelerated grain boundary grooving has significant effect on the surface morphology of NiSi1−uGeu films in Ni-SiGe system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morimoto, T., Momose, H.S., Linuma, T., Kunishima, I., Suguro, K., Okano, H., Katakabe, I., Nakajima, H., Tsuchiaki, M., Ono, M., Katsumate, Y., and Iwai, H., Tech. Dig. Int. Electron. Devices Meet (1991), pp. 654.Google Scholar
2. Zhang, S.-L., Microelectron. Eng. 70 (2-4), 174 (2003).Google Scholar
3. Pey, K. L., Choi, W. K., Chattopadhyay, S., Zhao, H. B., Fitzgerald, E. A., Antoniadis, D. A., and Lee, P. S., J. Vac. Sci. Technol. A 20, 1903 (2002).Google Scholar
4. Jarmar, T., Seger, J., Ericson, F., Mangelinck, D., Smith, U., and Zhang, S.-L., J. Appl. Phys. 92, 7193 (2002).Google Scholar
5. Seger, J., Zhang, S.-L., Mangelinck, D., and Radamson, H. H., Appl. Phys. Lett. 81, 1978 (2002).Google Scholar
6. Seger, J., and Zhang, S.-L., Thin Solid Films 429, 216 (2003).Google Scholar
7. Chen, L. J., Lai, J. B., and Lee, C. S., Micron 33, 535 (2002).Google Scholar
8. Yang, T. H., Luo, G. L., Chang, E. Y., Yang, T. Y., Tseng, H. C., and Chang, C. Y., IEEE Electron Dev. Lett. 24 (9), 544 (2003).Google Scholar
9. Lin, C. Y., Chen, W. J., Lai, C. H., Chin, Albert, and Liu, J., IEEE Electron Dev. Lett. 23 (8), 464 (2002).Google Scholar
10. Luo, Jian-Shing, Lin, Wen-Tai, Chang, C. Y., Shih, P. S., and Pan, F. M., J. Vac. Sci. Technol. A 18, 143 (2000).Google Scholar
11. Luo, Jian-Shing, Lin, Wen-Tai, Chang, C. Y., and Tsai, W. C., Mater. Chem. Phys. 54, 160 (1998); J. Appl. Phys. 82, 3621 (1997).Google Scholar
12. Luo, J. S., Lin, W. T., Chang, C. Y., Shih, P. S., Nuclear Instr. Methods B. 169, 124 (2000).Google Scholar
13. Jin, Z. H., Bhat, G. A., Yeung, M., Kwok, H. S., and Wong, M., Japn. J. Appl. Phys. Part 2-Lett. 36 (12B), L1637 (1997).Google Scholar