Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:25:18.563Z Has data issue: false hasContentIssue false

Effect of Geometrical Irregularities on the Band Gap of Porous Silicon

Published online by Cambridge University Press:  28 February 2011

B. Sapoval
Affiliation:
Laboratoire de Physique de la Matière Condensée, C.N.R.S. Ecole Polytechnique, 91128 Palaiseau Cédex. France
S. Russ
Affiliation:
Laboratoire de Physique de la Matière Condensée, C.N.R.S. Ecole Polytechnique, 91128 Palaiseau Cédex. France
Get access

Abstract

We discuss how the geometrical irregularities of small crystallites, quantum dots or wires may play an essential role in the density of electronic states near the band gap in semiconductors. Assuming a possible irregular structure for porous silicon we show that the irregularity has a strong effect on the value of the band gap and of the density of states in the near band gap region. The effect of the irregularity is essentially to enhance the quantum confinement effect and to screen the fundamental wave-function from the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990)Google Scholar
2 Sapoval, B., Gobron, T. and Margolina, A., Phys. Rev. Lett. 67, 2974 (1991). and B. Sapoval, "Waves and states in irregular resonators, application to electro-optical properties of porous silicon" presented at the IVth International Conference on Frontiers in Condensed Matter Physics, Bar-Ilan, Israël (15-18 March 1993).Google Scholar
3 Cullis, A.G. and Canham, L.T., Nature 353, 335 (1991)Google Scholar
4 Sapoval, B. and Gobron, T., Phys. Rev. E, 47, 3013 (1993).Google Scholar
5 Zhong, J. X. and Mosseri, R., J. of Non-Crystalline Solids 164–166,969 (1993).Google Scholar
6 Read, A. J., Needs, N. J., Nash, K. J., Canham, L. T., Calcott, P. D. J. and Qteish, A., Phys. Rev. Lett. 69, 1232(1992).Google Scholar
7 Buda, F., Kohanoff, J. and Parrinello, M., Phys. Rev. Lett. 69, 1272 (1992)Google Scholar
8 see, for instance, Sapoval, B. and Hermann, C., Physics of Semiconductors, Springer-Verlag, New York (1995)Google Scholar
9 Goudeau, P., Naudon, A., Bomchil, G. and Herino, R., J. Appl. Phys. 66, 625 (1989).Google Scholar
10 George, T., Anderson, M.S., Pike, W. T., Pike, T. L., Lin, T.L., Fathauer, R. W., Jung, K. H. and Kwong, D. L., Appl. Phys. Lett. 60, 2359 (1992)Google Scholar
11 Amisola, G.B., Behrensmeir, R., Gallighan, J. M. and Otter, F. A., Mamavar, F. and Kalkoran, N. M., Appl. Phys. Lett. 61, 2595 (1992)Google Scholar
12 Dumas, Ph., Gu, M., Syrikh, C., Salvan, F., Gimzewski, J. K., Vatel, O. and Halimaoui, A., in Optical properties of Low Dimensional Silicon Structures ed. by Bensahel, D. C., Canham, L. T. and Ossicini, S. (Kluwer Ac. Pub. Dordrecht, 1993) pp.157162.Google Scholar
13 Halimaoui, A., in Optical properties of Low Dimensional Silicon Structures ed. by D. C. Bensahel, L. T. Canham and S. Ossicini (Kluwer Ac. Pub. Dordrecht,1993) pp.1122 and references therein.Google Scholar