Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:56:13.609Z Has data issue: false hasContentIssue false

Effect of Film Morphology on Charge Transport in C60-based Organic Field Effect Transistors

Published online by Cambridge University Press:  01 February 2011

Mujeeb Ullah
Affiliation:
[email protected], Johannes Kepler University Linz, Institute of Semiconductor and Soild State Physics, Linz, Austria
Andrey K. Kadashchuk
Affiliation:
[email protected], National Academy of Sciences of Ukraine, Institute of Physic, Kyiv, Ukraine
Philipp Stadler
Affiliation:
[email protected], Johannes Kepler University Linz, Linz Institute of Organic Solar Cells (LIOS), Linz, Austria
Alexander Kharchenko
Affiliation:
[email protected], 5PANalytical B.V, Almelo, Netherlands
Almantas Pivrikas
Affiliation:
[email protected], Johannes Kepler University Linz, Linz Institute of Organic Solar Cells (LIOS), Linz, Austria
Clemens Simbrunner
Affiliation:
[email protected], Johannes Kepler University Linz, Institute of Semiconductor and Soild State Physics, Linz, Austria
Niyazi Serdar Sariciftci
Affiliation:
[email protected], Johannes Kepler University Linz, Linz Institute of Organic Solar Cells (LIOS), Linz, Austria
Helmut Sitter
Affiliation:
[email protected], Johannes Kepler University Linz, Institute of Semiconductor and Soild State Physics, Linz, Austria
Get access

Abstract

The critical factor that limits the efficiencies of organic electronic devices is the low charge carrier mobility which is attributed to disorder in organic films. In this work we study the effects of active film morphology on the charge transport in Organic Field Effect Transistors (OFETs). We fabricated the OFETs using different substrate temperature to grow different morphologies of C60 films by Hot Wall Epitaxy. Atomic Force Microscopy images and XRD results showed increasing grain size with increasing substrate temperature. An increase in field effect mobility was observed for different OFETs with increasing grain size in C60 films. The temperature dependence of charge carrier mobility in these devices followed the empirical relation named as Meyer-Neldel Rule and showed different activation energies for films with different degree of disorder. A shift in characteristic Meyer-Neldel energy was observed with changing C60 morphology which can be considered as an energetic disorder parameter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Huitema, H. F. A., et al‥ Nature 414, 599 (2001), andGoogle Scholar
Gelinck, G. H., et al., Nat. Mater. 3, 106 (2004).Google Scholar
2. Sirringhaus, H. et al., Nature (London) 401, 685 (1999).Google Scholar
3. Forrest, S. R., Nature (London) 428, 911 (2004).Google Scholar
4. Bässler, H., Physica Status Solidi B 175, 15 (1993).Google Scholar
5. Blom, P.W.M., and Vissenberg, M.C.J.M., Mater. Sci. Eng. 27, 53 (2000).Google Scholar
6. Arkhipov, V. I., et al, in Semiconducting Polymers: Chemistry, Physics and Engineering, 2nd Edition”, Eds. Hadziioannou, G. and Malliaras, G., Wiley-VCH Verlag, Weinheim, (2007).Google Scholar
7. Pasveer, W.F., et al., Phys. Rev. Lett. 94, 206601 (2005).Google Scholar
8. Coehoorn, R., Pasveer, W. F., Bobbert, P. A., and Michels, M. A. J., Phys. Rev. B 72, 155206 (2005).Google Scholar
9. Fishchuk, I. I., et al., Phys. Rev. B, 76, 045210 (2007).Google Scholar
10. Craciun, N. I., Wildeman, J., and Blom, P.W. M., Phys. Rev. Lett. 100, 056601 (2008).Google Scholar
11. Meijer, E. J., Meijer, E. J., Matters, M., Herwig, P. T., de Leeuw, D. M., and Klapwijk, T. M., Appl. Phys. Lett., 76, 3433 (2000).Google Scholar
12. Paloheimo, J. and Isotalo, H., Synth. Met. 55, 3185 (1993).Google Scholar
13. Ullah, Mujeeb, Singh, T. B., Sitter, H., Sariciftci, N. S., Appl. Phys. A, 97, 521 (2009).Google Scholar
14. Meyer, W. and Neldel, H., Z. Tech. Phys. 18, 588 (1937).Google Scholar
15. Yelon, A. and Movaghar, B., Phys. Rev. Lett. 65, 618 (1990);Google Scholar
Emin, D., Phys. Rev. Lett., 100, 166602 (2008).Google Scholar
16. Fishchuk, I. I., Kadachchuk, A., Ganoe, J., Ullah, Mujeeb, Sitter, H., Singh, Th. B., Sariciftci, N. S., and Bässler, H., Phys. Rev. B, 81, 045202 (2010).Google Scholar
17. Sitter, H., Nguyen Manh, T., Stifter, D., J. Cryst. Growth 174, 828 (1997).Google Scholar
18. Hertel, D., Bässler, H., Scherf, U., and Hörhold, H. H., J. Chem. Phys. 110, 9214 (1999).Google Scholar
19. Veenstra, S. C. and Jonkman, H. T., J. Polym. Sci., Part B: Polym. Phys. 41, 2549 (2003).Google Scholar
20. Limketkai, B. N. and Baldo, M. A., Phys. Rev. B 71, 085207 (2005).Google Scholar