Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:42:47.630Z Has data issue: false hasContentIssue false

Effect of Engineered Solid and Mesoporous Silica Particles Physical Properties on In Vitro Toxicity

Published online by Cambridge University Press:  25 October 2011

Kennedy Nguyen
Affiliation:
Schools of Engineering, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, U.S.A.
Gayatri Premasekharan
Affiliation:
Schools of Engineering, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, U.S.A.
Alexander Yuen
Affiliation:
Schools of Engineering, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, U.S.A.
Henry J. Forman
Affiliation:
Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, U.S.A. Davis School of Gerontology, University of Southern California, Ethel Percy Andrus Gerontology Center, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, U.S.A.
Valerie J. Leppert
Affiliation:
Schools of Engineering, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, U.S.A.
Get access

Abstract

Mesoporous silica is of current interest for therapeutic applications, such as drug delivery, because of its small size and internal pore structure into which small molecules can be adsorbed. However, while the toxicity literature is extensive for micron-sized crystalline silica due to occupational health concerns, there is relatively little information available for mesoporous silica. Here, solid silica and mesoporous silica particles are characterized using SEM, DLS, XRD, and BET analysis; and their toxicities assessed using a modified MTT assay for cell viability and DPPP assay for lipid peroxidation. On a mass basis, mesoporous silica reduces cell viability from 82 ± 8% to 73 ± 16% compared to solid silica, likely due to the decreased density and therefore increased number of particles and particle surface area. This modest increase in toxicity, compared to the dramatic 600X increase in total surface area for mesoporous silica, from both pore and particle surfaces, suggests that the toxicity mechanism depends on the surface area available to the cell and not the total surface area. DPPP results support this conclusion and indicate that membrane lipid peroxidation is involved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Zhao, Y., Trewyn, B.G., Slowing, I.I., Lin, V.S.Y., Journal of the American Chemical Society, 131 (2009) 83988400.10.1021/ja901831uGoogle Scholar
[2] Cho, Y., Shi, R., Borgens, R.B., Ivanisevic, A., Nanomedicine, 3 (2008) 507519.10.2217/17435889.3.4.507Google Scholar
[3] Vallet-Regi, M., Rámila, A., del Real, R.P., Pérez-Pariente, J., Chemistry of Materials, 13 (2000) 308311.10.1021/cm0011559Google Scholar
[4] Antognelli, C., Gambelunghe, A., Del Buono, C., Murgia, N., Talesa, V.N., Muzi, G., Chemico-Biological Interactions, 182 (2009) 1321.10.1016/j.cbi.2009.08.002Google Scholar
[5] Brown, D.M., Wilson, M.R., MacNee, W., Stone, V., Donaldson, K., Toxicology and Applied Pharmacology, 175 (2001) 191199.10.1006/taap.2001.9240Google Scholar
[6] Chang, J.-S., Chang, K.L.B., Hwang, D.-F., Kong, Z.-L., Environmental Science & Technology, 41 (2007) 20642068.10.1021/es062347tGoogle Scholar
[7] Fubini, B., Environ Health Perspect, 105 (1997) 10131020.Google Scholar
[8] Ghio, A.J., Kennedy, T.P., Whorton, A.R., Crumbliss, A.L., Hatch, G.E., Hoidal, J.R., Am J Physiol Lung Cell Mol Physiol, 263 (1992) L511518.10.1152/ajplung.1992.263.5.L511Google Scholar
[9] Warheit, D.B., Webb, T.R., Colvin, V.L., Reed, K.L., Sayes, C.M., Toxicological Sciences, 95 (2007) 270280.10.1093/toxsci/kfl128Google Scholar
[10] Napierska, D., Thomassen, L., Lison, D., Martens, J., Hoet, P., Particle and Fibre Toxicology, 7 (2010) 39.10.1186/1743-8977-7-39Google Scholar
[11] Vaniman, D., in: Energy, D.o. (Ed.), Los Alamos National Laboratory, 2001.Google Scholar
[12] Leofanti, G., Padovan, M., Tozzola, G., Venturelli, B., Catalysis Today, 41 (1998) 207219.10.1016/S0920-5861(98)00050-9Google Scholar
[13] Yu, C., Chu, H., Wan, Y., Zhao, D., Journal of Materials Chemistry, 20 (2010) 47054714.10.1039/b925864gGoogle Scholar
[14] Samberg, M.E., Oldenburg, S.J., Monteiro-Riviere, N.A., Environ Health Perspect, 118 (2009).Google Scholar
[15] Fisichella, M., Dabboue, H., Bhattacharyya, S., Saboungi, M.-L., Salvetat, J.-P., Hevor, T., Guerin, M., Toxicology in Vitro, 23 (2009) 697703.10.1016/j.tiv.2009.02.007Google Scholar
[16] Koch, C.C., Cavin, O.B., McKamey, C.G., Scarbrough, J.O., Applied Physics Letters, 43 (1983) 10171019.10.1063/1.94213Google Scholar
[17] Costello, M.T., Tribotest, 11 (2005) 207212.10.1002/tt.3020110304Google Scholar
[18] Inada, M., Nishinosono, A., Kamada, K., Enomoto, N., Hojo, J., Journal of Materials Science, 43 (2008) 23622366.10.1007/s10853-007-2022-yGoogle Scholar
[19] Sousa, A.d., Souza, K.C.d., Mohallem, N.D.S., Sousa, R.G.d., Sousa, E.s.M.B.d.., Advances in Diverse Industrial Applications of Nanocomposites, (2011) 177202.Google Scholar
[20] Laaksonen, T., Santos, H., Vihola, H., Salonen, J., Riikonen, J., Heikkilä, T., Peltonen, L., Kumar, N., Murzin, D.Y., Lehto, V.-P., Hirvonen, J., Chemical Research in Toxicology, 20 (2007) 19131918.10.1021/tx700326bGoogle Scholar
[21] Monteiro-Riviere, N.A., Inman, A.O., Carbon, 44 (2006) 10701078.10.1016/j.carbon.2005.11.004Google Scholar
[22] Okimoto, Y., Watanabe, A., Niki, E., Yamashita, T., Noguchi, N., FEBS Letters, 474 (2000) 137140.10.1016/S0014-5793(00)01587-8Google Scholar
[23] Takahashi, M., Shibata, M., Niki, E., Free Radical Biology and Medicine, 31 (2001) 164174.10.1016/S0891-5849(01)00575-5Google Scholar