No CrossRef data available.
Published online by Cambridge University Press: 03 September 2012
(001) CZ silicon wafers were implanted with arsenic (As+) at energies of 10–50keV to doses of 2×1014 to 5×1015/cm2. All implants were amorphizing in nature. The samples were annealed at 700°C for 16hrs. The resultant defect microstructures were analyzed by XTEM and PTEM and the As profiles were analyzed by SIMS. The As profiles showed significantly enhanced diffusion in all of the annealed specimens. The diffusion enhancement was both energy and dose dependent. The lowest dose implant/annealed samples did not show As clustering which translated to a lack of defects at the projected range. At higher doses, however, projected range defects were clearly observed, presumably due to interstitials generated during As clustering. The extent of enhancement in diffusion and its relation to the defect microstructure is explained by a combination of factors including surface recombination of point defects, As precipitation, As clustering and end of range damage.