Article contents
Effect of Ductile Phase Reinforcement Morphology on Toughening of MoSi2
Published online by Cambridge University Press: 15 February 2011
Abstract
Niobium was added to MoSi2 in the form of particles, random short fibers and continuous aligned fibers. It was found that the morphology of Nb played a role in the toughening that occurred (as measured by the area under load displacement curves from room temperature three point bend tests and the examination of fracture surfaces). The Nb particles did not toughen MoSi2. The random short fibers appeared to toughen MoSi2 via crack deflection along the fiber matrix interface. Aligned fibers imparted the greatest toughness improvements, as toughening resulted from fiber deformation. However, larger diameter fibers displayed a greater ability to toughen MoSi2 than smaller diameter fibers. This was attributed to the constraint resulting from the interfacial layer between the MoSi2 matrix and the Nb fiber. Maximum toughness occurs when the fiber is able to separate from the matrix and freely deform.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992
References
REFERENCES
- 4
- Cited by