Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:21:29.240Z Has data issue: false hasContentIssue false

Effect of Domain Structure on the Magnetoresistance of Epitaxial Thin Films of Ferromagnetic Metallic Oxide SrRuO3

Published online by Cambridge University Press:  10 February 2011

R. A. Rao
Affiliation:
Department of Mechanical Eng. and Materials Science, Duke University, Durham, NC 27708
D. B. Kacedon
Affiliation:
Department of Mechanical Eng. and Materials Science, Duke University, Durham, NC 27708
C. B. Eom
Affiliation:
Department of Mechanical Eng. and Materials Science, Duke University, Durham, NC 27708
Get access

Abstract

We have grown epitaxial ferromagnetic metallic oxide SrRuO3 thin films with different domain structures on (001) LaAlO3 and miscut (001) SrTiO3 substrates. The effect of crystallographic domain structures on the magnetization and magnetoresistive behavior of epitaxial SrRuO3 thin films has been studied. Magnetization measurements on the single domain film on 2° miscut (001) SrTiO3 substrate showed that the in-plane [110] direction, which is aligned along the miscut direction, is the easier axis for magnetization compared to the [001] direction. This film also showed a strong anisotropie magnetoresistance (AMR) effect of ∼ 8% in magnitude. In contrast, the SrRuO3 thin film on (001) LaAlO3 substrate shows identical magnetization and magnetoresistance behavior in two orthogonal directions on the film due to the presence of 90 domains in the plane. For both the films, large negative magnetoresistance effects (-10%) were observed when the current and the applied magnetic field are parallel. The magnetoresistance behavior is explained in terms of suppression of spin fluctuations near Tc and the AMR effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H., Science, 246, 413 (1994).Google Scholar
2. Kanbayashi, A., J. Phys. Soc. Japan, 44, 108 (1978);Google Scholar
Cao, G., McCall, S., Shepard, M., and Crow, J.E., Phys. Rev. B, 56, 321 (1997).Google Scholar
3. Callaghan, A., Moeller, C.W. and Ward, R., Inorg. Chem., 5, 1572 (1966);Google Scholar
Longo, J.M., Raccah, P.M. and Goodenough, J.B., J. Appl. Phys., 39, 1327 (1968).Google Scholar
4. Klein, L., Dodge, J.S., Ahn, C.H., Snyder, G.J., Geballe, T.H., Beasley, M.R., and Kapitulnik, A., Phys. Rev. Lett., 77, 2774 (1996).Google Scholar
5. Kanbayashi, A., J. Phys. Soc. Japan, 41, 1879 (1976).Google Scholar
6. Klein, L., Dodge, J.S., Ahn, C.H., Reiner, J.W., Mieville, L., Geballe, T.H., Beasley, M.R., and Kapitulnik, A., J. Phys: Condens. Matter, 8, 10111 (1996).Google Scholar
7. Eom, C.B., Cava, R.J., Fleming, R.M., Phillips, J.M., van Dover, R.B., Marshall, J.H., Hsu, J.W.P., Krajewski, J.J., and Peck, W.F., Science, 258, 1766 (1992).Google Scholar
8. Ahn, C.H., Ph.D. Thesis, Stanford University (1996).Google Scholar
9. Chen, C.L., Cao, Y., Huang, Z.J., Jiang, Q.D., Zhang, Z., Sun, Y.Y., Kang, W.N., Dezaneti, L.M., Chu, W.K., and Chu, C.W., Appl. Phys. Lett., 71, 1047 (1997).Google Scholar
10. Wu, X.D., Foltyn, S.R., Due, R.C., and Muenchausen, R.E., Appl. Phys. Lett., 62, 2434 (1993).Google Scholar
11. Rao, R.A., Gan, Q., and Eom, C.B., Appl. Phys. Lett., 71, 1171 (1997).Google Scholar
12. Gan, Q., Rao, R.A., and Eom, C.B., Appl. Phys. Lett., 70, 1962 (1997).Google Scholar
13. Kacedon, D.B., Rao, R.A., and Eom, C.B., Appl. Phys. Lett., 71, 1724 (1997).Google Scholar
14. Eom, C.B., Sun, J.Z., Yamamoto, K., Marshall, A.F., Luther, K.E., Laderman, S.S., and Geballe, T.H., Appl. Phys. Lett. 55, 595 (1989).Google Scholar
15. Eom, C.B., Sun, J.Z., Streiffer, S.K., Marshall, A.F., Yamamoto, K., Lairson, B.M., Anlage, S.M., Bravman, J.C., Geballe, T.H., Laderman, S.S., and Taber, R.C., Physica B, 171, 351 (1990).Google Scholar
16. Dolittle, L. R., Nucl. Instrum. Methods, B9, 344 (1985).Google Scholar
17. Gan, Q. et al., unpublished.Google Scholar
18. Allen, P.B., Berger, H., Chauvet, O., Forro, L., Jarlborg, T., Junod, A., Revaz, B., and Santi, G., Phys. Rev. B, 53, 4393 (1996).Google Scholar
19. Gausepohl, S.C., Lee, M., Char, K., Rao, R.A., and Eom, C.B., Phys Rev. B, 52, 3459 (1995).Google Scholar
20. Klein, L., Marshall, A.F., Rainer, J.W., Ahn, C.H., Geballe, T.H., Beasley, M.R., and Kapitulnik, A., preprint (1997).Google Scholar
21. Marshall, A.F., presented at the Materials Research Society - 1997 Spring Meeting : Epitaxial Oxide Thin Film Symposium (1997).Google Scholar