Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-15T13:48:59.976Z Has data issue: false hasContentIssue false

The Effect of Displacement Cascades on Small Helium Bubbles in Aluminum and Gold

Published online by Cambridge University Press:  16 February 2011

S E. Donnelly
Affiliation:
Joule Laboratory, Science Research Institute, University of Salford, M5 4WT, UK
R.C. Birtcher
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
C. Templier
Affiliation:
Laboratoire de Métallurgie Physique, University of Poitiers, 86022 Poitiers, France
R. Valizadeh
Affiliation:
Joule Laboratory, Science Research Institute, University of Salford, M5 4WT, UK
V. Vishnyakov
Affiliation:
Joule Laboratory, Science Research Institute, University of Salford, M5 4WT, UK
Get access

Abstract

The evolution of individual helium bubbles in thin foils of gold and aluminum irradiated with 400 keV Ar+ and 200 keV Xe+ has been followed with in-situ transmission electron microscopy for a comparison between the effects of dilute (Al) and dense (Au) collision cascades. Bubble shrinkage in Al has been attributed to direct displacement of the gas out of the bubbles. Effects in Au, include the disappearance and Brownian motion of bubbles under irradiation, and are consistent with thermal spike processes seen in molecular dynamics simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. NATO Advanced Research Workshop on Fundamental Aspects of Inert Gases in Solids, Vol. 279 of NATO Advanced Study Institute, Series B: Physics, edited by Donnelly, S. E. and Evans, J. H., (Bonas, France, 1990), Plenum, 1991.Google Scholar
2. Ono, K., Inoue, M., Kino, T., Furuno, S. and Izui, K., J. Nucl. Mater. 133&134, 477 (1985).Google Scholar
3. Taylor, A., Allen, C. W. and Ryan, E. A., Nucl. Instrum. Methods B24/25, 598 (1987).Google Scholar
4. Anderson, H. H. and Bay, H. L., Topics in Applied Physics, Vol. 47, edited by Behrisch, R. (Springer-Verlag, Berlin, 1981) p. 145.Google Scholar
5. Ghaly, Mai and Averback, R. S., Phys. Rev. Letters 72 (3) 364 (1994).Google Scholar
6. Vishnyakov, V., Donnelly, S. E. and Carter, G., Phil. Mag B70, 151157 (1994).Google Scholar
7. Evans, J. H., in reference 1, p. 307.Google Scholar
8. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Ranges of Ions in Solids, (Pergamon Press, New York 1985).Google Scholar
9. Birtcher, R. C., Donnelly, S. E. and Templier, C., Phys. Rev. B50(2), 764 (1994).Google Scholar
10. Perryman, L. J. and Goodhew, P. J., Acta Met. 36, 268 (1988).Google Scholar
11. Rubia, T. Diaz de la, Averback, R. S. and Hsieh, H., J. Mater. Res. 4(3), 579 (1989).Google Scholar
12. Evans, J. H., Nucl. Instrum. Methods B18, 16 (1986).Google Scholar
13. Donnelly, S. E., Mitchell, D. R. G. and Veen, A. E. van, in reference 1, p. 357.Google Scholar