Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:22:40.814Z Has data issue: false hasContentIssue false

Effect of Dimensionality and Anisotropy on the Holstein Polaron

Published online by Cambridge University Press:  10 February 2011

Katja Lindenberg
Affiliation:
Department of Chemistry and Biochemistry and Institute for Nonlinear Science, University of California at San Diego. La Jolla, CA 92093-0340
A. H. Romero
Affiliation:
Department of Chemistry and Biochemistry and Department of Physics, University of California at San Diego, La Jolla, CA 92093-0340
D. W. Brown
Affiliation:
Institute for Nonlinear Science, University of California at San Diego. La Jolla, CA 92093-0340
Get access

Abstract

We apply weak-coupling perturbation theory and strong-coupling perturbation theory to the Holstein molecular crystal model in order to elucidate the effects of anisotropy on polaron properties in D dimensions. The ground state energy is considered as a primary criterion through which to study the effects of anisotropy on the self-trapping transition, with particular attention given to shifting of the self-trapping line and the adiabatic critical point. The effects of dimensionality and anisotropy on electron-phonon correlations and polaronic mass enhancement are studied, with particular attention given to the polaron radius and the characteristics of quasi-l-D and quasi-2-D structures. Perturbative results are confirmed by selected comparisons with variational calculations and quantum Monte Carlo data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rashba, E. I., Opt. Spektrosk. 2, 75 (1957).Google Scholar
2. Rashba, E. I., Opt. Spektrosk. 2, 88 (1957).Google Scholar
3. Holstein, T., Ann. Phys. (N.Y.) 8, 325 (1959).Google Scholar
4. Derrick, G. H., J. Math. Phys. 5, 1252 (1962).Google Scholar
5. Emin, D., Adv. Phys. 22, 57 (1973).Google Scholar
6. Sumi, A. and Toyozawa, Y., J. Phys. Soc. Japan 35, 137 (1973).Google Scholar
7. Emin, D. and Holstein, T., Phys. Rev. Lett. 36, 323 (1976).Google Scholar
8. Toyozawa, Y. and Shinozuka, Y., J. Phys. Soc. Jap. 48, 472 (1980).Google Scholar
9. Schiittler, H. B. and Holstein, T., Ann. Phys. 166, 93 (1986).Google Scholar
10. Ueta, M. et al., Excitonic Processes in Solids (Springer-Verlag, Berlin, 1986).Google Scholar
11. Kabanov, V. V. and 0. Mashtakov, Y., Phys. Rev. B 47, 6060 (1993).Google Scholar
12. Silinsh, E. A. and Cápek, V., Organic Molecular Crystals: Interaction, Localization and Transport Phenomena (AIP-Press, New York, 1994).Google Scholar
13. Song, K. S. and Williams, R. T., Self-Trapped Excitons (Springer Verlag, Berlin, 1996).Google Scholar
14. Holstein, T., Mol. Cryst. Liq. Cryst. 77, 235 (1981).Google Scholar
15. Holstein, T. and Turkevich, L., Phys. Rev. B 38, 1901 (1988).Google Scholar
16. Holstein, T. and Turkevich, L., Phys. Rev. B 38, 1922 (1988).Google Scholar
17. Holstein, T., Ann. Phys. (N.Y.) 8, 343 (1959).Google Scholar
18. Alexandrov, A. S. and Mott, S. N., Polarons & Bipolarons (World Scientific, London, 1995).Google Scholar
19. Nakajima, S., Toyozawa, Y., and Abe, R., The Physics of Elementary Excitations (Springer-Verlag,Berlin, 1980).Google Scholar
20. Mahan, G. D., Many-Particle Physics (Plenum Press, New York, 1993).Google Scholar
21. Marsiglio, F., Physica C 244, 21 (1995).Google Scholar
22. Stephan, W., Phys. Rev. B 54, 8981 (1996).Google Scholar
23. Kornilovitch, P. E., cond-mat 9808155 (1998).Google Scholar
24. Kornilovitch, P. E., private communication (1998).Google Scholar
25. D. Brown, W., Lindenberg, K., and Zhao, Y., J. Chem. Phys. 107, 3179 (1997).Google Scholar
26. Romero, A. H., D. Brown, W., and Lindenberg, K., J. Chem. Phys. 109, 6540 (1998).Google Scholar
27. Romero, A. H., Brown, D. W., and Lindenberg, K., in preparation (1998).Google Scholar
28. Raedt, H. D. and Lagendijk, A., Phys. Rev. B 27, 6097 (1983).Google Scholar
29. Raedt, H. D. and Lagendijk, A., Phys. Rev. B 30, 1671 (1984).Google Scholar
30. Lagendijk, A. and Raedt, H. D., Phys. Lett. A 108A, 91 (1985).Google Scholar
31. Alexandrov, A. S., Kabanov, V. V., and Ray, D. E., Phys. Rev. B 49, 9915 (1994).Google Scholar
32. Zhao, Y., Brown, D. W., and Lindenberg, K., J. Chem. Phys. 106, 5622 (1997).Google Scholar
33. Zhao, Y., Brown, D. W., and Lindenberg, K., J. Chem. Phys. 107, 3159 (1997).Google Scholar
34. Wellein, G. and Fehske, H., Phys. Rev. B 56, 4513 (1997).Google Scholar
35. Jeckelmann, E. and White, S. R., Phys. Rev. B 57, 6376 (1998).Google Scholar
36. D. Brown, W. and Lindenberg, K., Physica D 113, 267 (1998).Google Scholar