Article contents
Effect of Diameter on Electron Field Emission of Carbon Nanotube Bundles
Published online by Cambridge University Press: 26 February 2011
Abstract
Arrays of multi-walled carbon nanotunbe (CNT) bundles were fabricated on silicon [100] substrate with iron-nitrate sol-gel catalyst patterned via standard photolithographic techniques. Nanotube bundles with diameters ranging from 400µm to 15µm were grown in a chemical vapor deposition reactor and electrically characterized using a scanning-anode probe apparatus. Results showed a relatively low number of graphitic layers in individual nanotubes and a definite increase in field emission performance with decreasing bundle diameter. A 400µm wide matt of CNTs yielded a turn-on field of 6.7 V/µm and field enhancement of 602 while 15µm bundles performed significantly better with turn-on fields of 1.6 V/µm and field enhancement factors of 2425. The overall trend strongly suggests that the field emission character of CNT based aggregate structures such as those presented here is proportional to their aspect ratio.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 901: Symposium R – Assembly at the Nanoscale – Toward Functional Nanostructured Materials , 2005 , 0901-Ra16-52-Rb16-52
- Copyright
- Copyright © Materials Research Society 2006
References
- 2
- Cited by