Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T06:33:44.879Z Has data issue: false hasContentIssue false

The Effect of Composition on the Properties of Semiconducting Transition Metal Nitrides

Published online by Cambridge University Press:  01 February 2011

Maria G. Moreno-Armenta
Affiliation:
[email protected], Universidad Nacional Autonoma de Mexico, Centro de Ciencias de la Materia Condensada, km 107 carretera Tijuana-Ensenada, Ensenada B.C., 22800, Mexico, 52(646) 1744602, 52(646)1744603
Reyes-Serrato Armando
Affiliation:
[email protected], Universidad Nacional Autonoma de Mexico, Centro de Ciencias de la Materia Condensada, Apartado Postal 356, Ensenada, B.C., 22800, Mexico
Soto H. Gerardo
Affiliation:
[email protected], Universidad Nacional Autonoma de Mexico, Centro de Ciencias de la Materia Condensada, Apartado Postal 356, Ensenada, B.C., 22800, Mexico
Get access

Abstract

Using the full potential linearized augmented plane wave (FP-LAPW) method, we investigate the bulk structural and electronic properties in the scandium-, yttrium-, and copper-nitrides over a wide range of nitrogen concentrations. The N atom was gradually incorporated into metal matrix with and without metal vacancies. The ground state properties like densities of states (DOS) and formation energies are determined for each calculated alloy. We have found that the semi-conducting state in copper nitride have a tinny compositional margin. Any deviation of the ideal stoichiometry will produce a metallic character. What is more, the stabilities of the conductive phases are very close to the stability of the semi conducting phase, with a little margin favorable to the conducting phases. The calculations of scandium- and yttrium nitrides show, that for very low nitrogen incorporations, the hexagonal and fcc phases may coexist. However, for high nitrogen concentration the cubic phases are favored. For non-stoichiometric nitrogen content, the materials behave as metal, whereas at stoichiometric composition the DOS becomes zero at Fermi level (EF), confirming in this way the semiconductor character of these nitrides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Takeuchi, N., Phys. Rev. B 65 (2002) 45204.Google Scholar
2. Gall, D., Städele, M., Järrendahl, K., Petrov, I., Desjardins, P., Haasch, R.T., Lee, T.Y., Green, J.E., Phys. Rev. B 63 (2001) 125119.Google Scholar
3. Soto, G., Moreno-Armenta, M.G., and Reyes-Serrato, A., Comp. Mater. Sci. In press (2007) doi:10.1016/j.commatsci.2007.06.033Google Scholar
4. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., and Luitz, J., WIEN2K, An Augmented Plane Wave+Local orvitals Program for Calculating Crystal Properties, edited by Schwarz, karlheinz Google Scholar
5. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, (1996) 3865.Google Scholar
6. Hugosson, H.W., Korzhavyi, P., Jansson, U., Johansson, B., and Eriksson, O., Phys. Rev. B 63 (2001) 165116.10.1103/PhysRevB.63.165116Google Scholar
7. Stampft, C. and Freeman, A.J., Phys. Rev B 67 (2003) 64108.Google Scholar
8. Nosaka, T., Yoshitake, M., Okamoto, A., Ogawa, S., Nakayama, Y., Appl. Surf. Sci. 169–170 (2001) 358.10.1016/S0169-4332(00)00681-4Google Scholar
9. Borsa, D.M. and Boerma, D.O., Surf. Sci. 548 (2004) 95.Google Scholar
10. Moreno-Armenta, M.G., Martinez, A., and Takeuchi, N., Solid State Science 6 (2003) 9.Google Scholar
11. Mancera, L., Rodríguez, J.A. and Takeuchi, N., J. Phys.:Condens. Matter 15 (2003) 2625.Google Scholar
12. Moreno-Armenta, M.G. and Soto, G., Comp. Mater. Sci. 40 (2007) 275.10.1016/j.commatsci.2006.12.009Google Scholar