Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:36:23.559Z Has data issue: false hasContentIssue false

The Effect of Co-Implantation on the Electrical Activity of Implanted Carbon in GaAs

Published online by Cambridge University Press:  26 February 2011

A. J. Moll
Affiliation:
Center for Advanced Materials, Materials Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road Berkeley, CA 94720 Materials Science and Mineral Engineering, University of California at Berkeley, Berkeley, CA 94720
W. Walukiewicz
Affiliation:
Center for Advanced Materials, Materials Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road Berkeley, CA 94720
K. M. Yu
Affiliation:
Center for Advanced Materials, Materials Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road Berkeley, CA 94720
W. L. Hansen
Affiliation:
Center for Advanced Materials, Materials Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road Berkeley, CA 94720
E. E. Haller
Affiliation:
Center for Advanced Materials, Materials Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road Berkeley, CA 94720 Materials Science and Mineral Engineering, University of California at Berkeley, Berkeley, CA 94720
Get access

Abstract

We have undertaken a systematic study of the effect of co-implantation on the electrical properties of C implanted in GaAs. Two effects have been studied, the additional damage caused by co-implantation and the stoichiometry in the implanted layer. A series of co-implant ions were used: group III (B, Al, Ga), group V (N, P, As) and noble gases (Ar, Kr). Co-implantation of ions which create an amorphous layer was found to increase the electrical activity of C Once damage was created, maintaining stoichiometric balance by co-implantation of a group III further increased the fraction of electrically active carbon impurities. Co-implantation of Ga and rapid thermal annealing at 950°C for 10 s resulted in carbon activation as high as 68%, the highest value ever reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Robinson, H. G., Deal, M. D., and Stevenson, D. A., Appl. Phys. Lett. 58, 2800 (1991).Google Scholar
2. Enquist, P., Hutchby, J. A., and de Lyon, T. J., J. Appl. Phys. 60, 4485 (1988).Google Scholar
3. Das, M. B., IEEE Trans. Electron Devices 25, 604 (1988).Google Scholar
4. Yamada, T., Tokumitsu, E., Saito, K., Akatsuka, T., Komagai, M., and Takahashi, K., J. Cryst. Growth 95, 145, (1989).Google Scholar
5. Hanna, M. C., Lu, Z. H., and Majerfeld, A., Appl. Phys. Lett. 58, 164 (1991).Google Scholar
6. Shin, B. K., Appl. Phys. Lett. 22, 438 (1976).CrossRefGoogle Scholar
7. Paulson, W. M. and Tam, G., in Semi-Insulating III-V Materials 1984, edited by Look, D. C. and Blakemore, J. S. (Shiva, Cheshire, England, 1984) p. 53.Google Scholar
8. Sansbury, J. D. and Gibbons, J. F., Radiat. Eff. 6, 269 (1970).Google Scholar
9. Harris, J. S., in International Conference on Ion Implantation in Semiconductors, edited by Ruge, I. and Graul, J. (Springer-Verlag, Berlin, 1971) p. 157.CrossRefGoogle Scholar
10. Shin, B. K., Ehret, J. E., Park, Y. S., and Stefiniw, M., J. Appl. Phys. 49, 2988 (1978).Google Scholar
11. Pearton, S. J. and Abemathy, C. R., Appl. Phys. Lett. 55, 678 (1989).Google Scholar
12. Pearton, S. J., Hobson, W. S., Kinsella, A. P., Kovalchick, J., Chakrabarti, U. K., and Abemathy, C. R., Appl. Phys. Lett. 56 1263 (1990).CrossRefGoogle Scholar
13. Heckingbottom, R. and Ambridge, T., Radiat. Eff. 17, 31 (1973).Google Scholar
14. Lindhard, J., Scharff, M., Schiott, H. E., Kgl. Danske. Videnskab. Selskab. Mat.-Fys. Medd. 33 (1963) No. 14.Google Scholar
15. Grimaldi, M. G., Paine, B. M., Nicolet, M. -A., and Sadana, D. K., J. Appl. Phys. 52, 4038 (1981).CrossRefGoogle Scholar