Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T16:03:44.597Z Has data issue: false hasContentIssue false

Effect of cement water on UO2 solubility

Published online by Cambridge University Press:  03 July 2014

C. Cachoir
Affiliation:
SCK•CEN, Boeretang 200, B-2400 Mol, Belgium
Th. Mennecart
Affiliation:
SCK•CEN, Boeretang 200, B-2400 Mol, Belgium
K. Lemmens
Affiliation:
SCK•CEN, Boeretang 200, B-2400 Mol, Belgium
Get access

Abstract

To assess the stability of spent fuel in the highly alkaline chemical environment of the Belgian Supercontainer design, static leach experiments were performed with depleted UO2 and 238Pu-doped UO2 at different SA/V ratios for 1.5 years in cement waters (11.7< pH < 13.5) at ambient temperature and under argon atmosphere. The influence of the calcium concentration on the uranium release was also investigated. While the ultrafiltered U(IV) concentration was 10-9-10-8 mol.L-1 and independent of the pH, the U(VI) release from the UO2 surface was enhanced by the OH- concentration, leading to soluble U concentrations up to 10-5 mol.L-1 at high SA/V and under the influence of radiolysis. Together with the high Ca concentration, this can lead to the formation of Ca-U(VI) colloids as precursor of Ca-U(VI) secondary phases, decreasing the soluble U concentration. The precipitation of Ca-U secondary phases was however not clearly evidenced by surface analyses.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bel, J.J.P. et al. ., Mater. Res. Soc. Symp. Proc. Vol. 932, pp.2332, (2006).10.1557/PROC-932-122.1CrossRefGoogle Scholar
Grambow, B. et al. ., Report JRC-ITU-SCA-2005/01, (2005).Google Scholar
Grambow, B. et al. ., Final Project Report: MICADO final report, (2010).Google Scholar
Loida, A. et al. ., Mater. Res. Symp. Proc. Vol. 1193, pp 597604, (2009).10.1557/PROC-1193-597CrossRefGoogle Scholar
Loida, A. et al. ., Mater. Res. Symp. Proc. Vol. 1475, pp 119124, (2012).CrossRefGoogle Scholar
Cui, D. et al. ., Mater. Res. Soc. Symp. Proc. Vol. 757, pp. 359364, (2003).Google Scholar
Santos, B.G. et al. ., Journal of Nuclear Materials 350, pp 320331, (2006).CrossRefGoogle Scholar
Mennecart, T. et al. ., Mater. Res. Symp. Proc. Vol. 1475, 293298, (2012).Google Scholar
Hussonnois, M. et al. ., Mater. Res. Soc. Symp. Proc. Vol. 127, pp 979984, (1989).10.1557/PROC-127-979CrossRefGoogle Scholar
Ollila, K., Posiva report, POSIVA-96-01, (1996).Google Scholar
Oversby, V. M., SKB Technical report TR-99-22 (1999).Google Scholar
Neck, V. et al. ., Radiochimica Acta 89, pp 116, (2001).10.1524/ract.2001.89.1.001CrossRefGoogle Scholar
Tits, J. et al. ., Mater. Res. Soc. Symp. Proc. 1107, pp 467474, (2008).CrossRefGoogle Scholar
Ollila, K., Posiva report 2008-75, 2008.Google Scholar
Wang, L. et al. ., NIROND-TR report 2008-23 (2009).Google Scholar
Moroni, L.P. et al. ., Waste Management Vol. 15, N° 3, pp 243253, (1995).CrossRefGoogle Scholar
Altmaier, M. et al. ., Migration 2005, Avignon- France Septembre 1823, (2005).Google Scholar
Berner, U. et al. ., PSI report PSI Bericht -99-10, (1999).Google Scholar
Meca, S. et al. ., Radiochimica Acta 96, pp 535539 (2008).10.1524/ract.2008.1534CrossRefGoogle Scholar
Sutton, M., PhD. Thesis, Loughborough University (1999).Google Scholar
Yamazaki, H.. et al. ., Radioactive Waste Management vol. 2., pp16071611, (1992).Google Scholar
Wellman, D.M. et al. ., Cement and Concrete Research 37, pp 151160, (2007).CrossRefGoogle Scholar
Bethke, C.M., Yeakel, S., The Geochemist workbench release 9.0. December 2011.Google Scholar
Salah, S. et al. ., First Full Draft. SCK•CEN report, ER-198, (2012).Google Scholar
Cerrato, J. M. et al. ., Environ. Sci. Technol. 46, pp 27312737 (2012).CrossRefGoogle Scholar