Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:28:08.829Z Has data issue: false hasContentIssue false

Effect of Catalyst Supports in the Synthesis of Graphite Nanostructures

Published online by Cambridge University Press:  10 February 2011

P. E. Anderson
Affiliation:
Department of Chemistry, Northeastern University, Boston, MA 02115
N. M. Rodriguez
Affiliation:
Department of Chemistry, Northeastern University, Boston, MA 02115
Get access

Abstract

It is well established that the structural characteristics of graphite nanofibers can be controlled by several factors including, the chemical nature of the catalyst, the composition of the reactant gas mixture and temperature at which the growth process is performed. In the current investigation we have endeavored to modify the behavior of the catalyst by dispersing the active metals on different support media. We have found that the strength of the metal-support interaction exerts a significant impact not only on the average size of the nanofibers generated by such a procedure, but also results in major changes in the architecture of the carbon materials. The support imposes certain geometrical constraints on the metal particles and these features are manifested in modifications in the degree of crystalline perfection and arrangement of the graphite sheets constituting the nanofibers. In addition, there is also the possibility that the support can induce electronic perturbations in the metal particles, a feature that will be most pronounced with a conductive carrier.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chambers, A., Park, C., Baker, R. T. K. and Rodriguez, N. M., J. Phys. Chem. 102, 4253 (1998).Google Scholar
2. Chambers, A., Nemes, T., Rodriguez, N. M. and R. Baker, T. K., J. Phys. Chem. 102, 2251 (1998).Google Scholar
3. Park, C. and Baker, R. T. K., J. Phys. Chem. 102, 5168 (1998).Google Scholar
4. Hoogenraad, M. S., Leeuwarden, R. A. G. M. M. van, Vriesman, G. J. B. van Breda, Broersma, A., Dillen, A. J. van, and Geus, J. W., Preparation of Catalysts VI (Poncelet, G. et al. Eds). Elsevier Sci. B.V. 263, (1995).Google Scholar
5. Rodriguez, N. M., J. Mat. Res. 8, 3233 (1993).Google Scholar
6. Rodriguez, N. M., Chambers, A., and Baker, R. T. K., Langmuir, 11, 3862 (1995).Google Scholar
7. Jung, H-J., Vannice, M. A., Mulay, L. N., Stanfield, R. M. and Delgass, W. N., J. Catal. 76, 208 (1982).Google Scholar
8. Kim, M. S., Rodriguez, N. M. and Baker, R. T. K., J. Catal. 131, 60 (1991).Google Scholar
9. Park, C., Rodriguez, N. M. and Baker, R. T. K., J. Catal. 169, 212 (1997).Google Scholar
10. Rodriguez, N. M., Kim, M. S. and Baker, R. T. K., J. Phys. Chem. 98, 13108 (1994).Google Scholar
11. Gao, R., Tan, C. D. and Baker, R. T. K., Catal. Today in press.Google Scholar
12. Rodriguez, N. M., Kim, M. S. and Baker, R. T. K., J. Catal. 144, 93 (1993).Google Scholar
13. Krishnankutty, N., Park, C. and Baker, R. T. K., Catal. Today 37, 295 (1997).Google Scholar
14. Park, C. and Baker, R. T. K., J. Catal. 179, 361 (1998).Google Scholar
15. Weilers, A. F. H., Kioebrugge, G. W., and Geus, J. W.. J. Catal. 121, 375 (1990).Google Scholar
16. Weilers, A. F. H., Hop, C. E. C. A., Beijnum, J. van, Kraan, A. M. van der, and Geus, J. W.. J. Catal. 121, 364 (1990).Google Scholar
17. Dry, M. E., Shingles, T., and van, C. S. Botha, H.. J. Catal. 17, 341 (1970).Google Scholar