Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-21T10:25:36.227Z Has data issue: false hasContentIssue false

Effect of Carrier Gas on the Surface Morphology and Mosaic Dispersion for GaN Films by Low-Pressure MOCVD

Published online by Cambridge University Press:  21 February 2011

T. J. Kistenmacher
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723
D. K. Wickenden
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723
M. E. Hawley
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
R. P. Leavitt
Affiliation:
U. S. Army Research Laboratory, Adelphi, MD 20783
Get access

Abstract

Low-pressure metal-organic chemical vapor deposition (MOCVD) has been used to deposit unnucleated and self-nucleated GaN thin films on (00.1) sapphire substrates. For the self-nucleated films, initial layers were grown at 540°C using trimethylgallium and ammonia as elemental sources and either nitrogen or hydrogen as the carrier gas. Using these same gas phase conditions, overlayers on native (00.1) sapphire substrates or the GaN-nucleated (00.1) sapphire substrates were deposited at 1025°C. The surface morphology and mosaic dispersion of these unnucleated and self-nucleated GaN thin films have been surveyed by a combination of real space images from atomic force microscopy and reciprocal space intensity data from X-ray scattering measurements. As expected, the unnucleated GaN films show a large-grained hexagonal relief, typical of three-dimensional island growth. However, the self-nucleated films are shown to be dense mosaics of highly oriented islands, emblematic of a more two-dimensional growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).Google Scholar
2 Wickenden, D. K., Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Estes Wickenden, A., Mat. Res. Soc. Symp. Proc. 221, 167 (1991).Google Scholar
3 Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
4 Khan, M. A., Kuznia, J. N., Van Hove, J. M., Olson, D. T., Krishnankutty, S., and Kolbas, R. M., Appl. Phys Lett. 58, 526 (1991).Google Scholar
5 Goldenberg, B., Zook, J. D., and Ulmer, R. J., Appl. Phys. Lett. 62, 381 (1993).Google Scholar
6 Piano, W. E., Major, J. S. Jr., Welch, D .F., and Speirs, J., Electron. Lett. 30, 2079 (1994).Google Scholar
7 Doverspike, K., Rowland, L. B., Gaskill, D. K., and Freitas, J. A. Jr., J. Electron. Mat. 24, 269 (1995).Google Scholar
8 Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
9 Ilegems, M., J. Crystal Growth 13/14, 360 (1972).Google Scholar
10 Wickenden, D. K., Faulkner, K. R., Brander, R. W., and Isherwood, B. J., J. Crystal Growth 9, 158 (1971).Google Scholar
11 Wickenden, D. K., Bargeron, C. B., Bryden, W. A., Miragliotta, J., and Kistenmacher, T. J., Appl. Phys. Lett. 65, 2024 (1994).Google Scholar
12 See, for example, Kapolnek, D., Xu, X. H., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., and Speck, J. S., Appl. Phys. Lett. 67, 1541 (1995).Google Scholar
13 See, for example, Lester, S. D., Ponce, F. A., Craford, M. G., and Steigerwald, D. A., Appl. Phys. Lett. 66, 1249 (1995).Google Scholar