No CrossRef data available.
Article contents
Effect of Boron Doping on the C49 TO C54 Phase Transformation in Ti/Si (100) Bilayers
Published online by Cambridge University Press: 10 February 2011
Abstract
We have demonstrated that the formation of C54 TiSi2 on Boron-doped single crystal silicon substrates, under RTA annealing conditions in a Nitrogen ambient, leads to a thicker TiN capping surface layer, thinner silicide layer, higher C49 to C54 transformation temperature and greater interface roughness compared to C54 TiSi 2 formation on undoped single crystal silicon substrates. Titanium films 32 nm thick were deposited on undoped and boron-doped single crystal silicon substrates. The films were annealed at 3 /C/isn nitrogen to final quenching temperatures between 500 °C and 900 TC. Ex-situ four point probe sheet resistance, cross sectional transmission electron microscopy (XTEM), high resolution transmission electron microscopy (HRTEM) and x-ray diffraction (XRD) were used to analyze the resulting TiN on TiSi2 bilayer. The C49 to C54 transformation occurs circa 760 TC and 810 TC for the undoped and boron-doped cases respectively. HRTEM observations reveal a thick 20 nm TIN layer on the C54 TiSi2 film in the boron-doped case but only fine dispersed TiN particles embedded on the top of the silicide in the undoped case. It was observed that the resultant silicide in the boron-doped case was thinner and the TiSi2 /Si(100) interface is rougher. XRD and TEM analysis show that in the boron doped case, there is a preferred C54 (040) orientation compared to a random orientation for the undoped case.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997