Article contents
Effect of B Addition on Thermal Stability of Lamellar Structure in Ti-47Al-2Cr-2Nb Alloys
Published online by Cambridge University Press: 26 February 2011
Abstract
Thermal stability of fully lamellar microstructures in Ti-47Al-2Cr-2Nb (at.%) alloys with and without B additions has been evaluated in the temperature range of 800 to 1200°C. The alloy with 0.15B exhibits an α2 + γ fully lamellar microstructure containing ribbon-like structures (TiB2+β) inside the lamellar colonies. During aging at 800 and 1000°C, β particles surrounded by γ grains form adjacent to the ribbon-like structures. The formation of these grains is attributed to the precipitation of thin plate-like β phase along {1100} within the TiB2 ribbon particles, resulting in the loss of α2 plates around the ribbon-like structure by scavenging Ti. This allows coarsening γ lamellar plates to form new γ grains, and then the ribbon-like structure completely dissolves to leave only β particles. At 1200°C, discontinuous coarsening (DC) of the lamellae becomes the dominant mode of microstructural change for all the alloys. However, the ribbon-like structures in the alloy with B additions play a role in pinning the DC cells, which leads to higher thermal stability of the lamellar microstructure in that alloy.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
REFERENCES
- 1
- Cited by