Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:36:44.776Z Has data issue: false hasContentIssue false

Effect of Au Nanocrystals Embedded in Conductive Polymer on Non-volatile Memory Window

Published online by Cambridge University Press:  01 February 2011

Hyun Min Seung
Affiliation:
[email protected], Hanyang University, Division of nanoscale semiconductor engineering, Nano SOI process Laboratory, Room #101,HIT, Hanyang University 17 Haedang-dong, Seoungdong-gu, Seoul, 133-791, Korea, Republic of, 82-2-2220-0234, 82-2-2296-1179
Jong Dae Lee
Affiliation:
[email protected], Hanyang University, Division of nanoscale semiconductor engineering, Nano SOI process Laboratory, Room #101,HIT, Hanyang University 17 Haedang-dong, Seoungdong-gu, Seoul, 133-791, Korea, Republic of
Byeong-Il Han
Affiliation:
[email protected], Hanyang University, Division of nanoscale semiconductor engineering, Nano SOI process Laboratory, Room #101,HIT, Hanyang University 17 Haedang-dong, Seoungdong-gu, Seoul, 133-791, Korea, Republic of
Gon-Sub Lee
Affiliation:
[email protected], Hanyang University, Division of nanoscale semiconductor engineering, Nano SOI process Laboratory, Room #101,HIT, Hanyang University 17 Haedang-dong, Seoungdong-gu, Seoul, 133-791, Korea, Republic of
Jea-Gun Park
Affiliation:
[email protected], Hanyang University, Division of nanoscale semiconductor engineering, Nano SOI process Laboratory, Room #101,HIT, Hanyang University 17 Haedang-dong, Seoungdong-gu, Seoul, 133-791, Korea, Republic of
Get access

Abstract

Recently, non-volatile polymer memories have been researched as a next generation of non-volatile memory because of its simple structure and easy fabrication process. We found that two types of non-volatile polymer memory have different I-V behavior. First Polymer non-volatile memory with metal / oxide / polymer / metal structure But Polymer non-volatile memory embedded Au Nano-crystal shows different I-V behavior. Polymer non-volatile memory shows NDR(Negative Differential Resistance) Region after threshold voltage and low to high current path at increasing positive and negative bias. We can observe NDR(Negative Differential Resistance) Region on Polymer non-volatile memory embedded Au Nano crystal. We fabricated devices three different type to confirm difference Polymer non-volatile memory with metal / polymer / metal structure, metal / oxide / polymer / metal structure and Au nano-crystal embedded Polymer non-volatile memory. First we fabricated Polymer non-volatile memory with metal / PVK(Poly-n-vinyl carbarzole) / metal structure. first type of device shows ohmic I-V behavior. Second type of polymer non-volatile memory has oxide layer between metal and polymer layer. Oxide layer made by O2 plasma treatment(100W RF power, 100SCCM O2 gas flow) after metal layer deposited. Second type of device has same structure as first device except oxide layer. Second type of device shows I-V behavior similar to Resistive Memory. Resistive non-volatile memory shows low to high current path at increasing positive bias and high to low current path at increasing negative bias. I-V behaviors of second device due to effect of oxide layer between metal and polymer layer. Third type of polymer non-volatile memory we embed Au nano-crystal layer in polymer layer. Au nano-crystal layer embedded by curing process. We deposit 5nm Au layer after spin coated PVK(Poly-n-vinyl carbarzole) layer and curing at 300¡É. We can observe NDR(Negative Differential Resistance) Region and different I-V behaviors with other type of device. Finally we fabricated polymer non-volatile memory embedded au nano-crystal by dispersion method to confirm effect of au nano-crystal. We report difference I-V behaviors polymer non-volatile memory with metal / polymer / metal structure and polymer non-volatile memory embedded au nano-crystals

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, C. W. and Van Slyke, S. A., Appl. Phys. Lett. 51, 913 (1987).Google Scholar
2. Burroughs, J. H. Bradley, D. D. C. Brown, A. R. Marks, R. N. Mackay, K. Friend, R. H. Bums, P. L. and Holmes, A. B. Nature (London) 347, 539 (1990).Google Scholar
3. Garnier, F. Hajlaoui, R. Yassar, A. and Srivastava, P. Science 265, 1684 (1994).Google Scholar
4. Tessler, N. Denton, G. J. and Friend, R. H. Nature (London) 382, 695 (1996).Google Scholar
5. Ma, L. P. Liu, J. Pyo, S. and Yang, Y. Appl. Phys. Lett. 80, 362 (2002).Google Scholar
6. Ma, L. P. Liu, J. and Yang, Y. Appl. Phys. Lett. 80, 2997 (2002)Google Scholar
7. Ma, L. P. Pyo, S. M. Ouyang, J. Xu, Q. F. and Yang, Y. Appl. Phys. Lett. 82, 1419 (2003).Google Scholar
8. Ma, L. P. Liu, J. Pyo, S. M. Xu, Q. F. and Yang, Y. Molec. Cryst. Liq. Cryst. 378, 185 (2002).Google Scholar
9. He, J. Ma, L. P. Wu, J. and Yang, Y. J. Appl. Phys. 97, 64507 (2005).Google Scholar
10. Bozano, L. D. Kean, B. W. Beinhoff, M. Carter, K. R. Rice, P. M. and Scott, J. C. Adv. Funct. Mater. 15, 1933 (2005).Google Scholar
11. Bozano, L. D. Kean, B. W. Deline, V. R. Salem, J. R. and Scott, J. C. Appl. Phys. Lett. 84, 607 (2004).Google Scholar
12. Simmons, J. G. and Verderber, R. P. Proc. R. Soc., London Ser. A 301, 77 (1967).Google Scholar
13. Lai, Y. S. Tu, C. H. Kwong, D. L. and Chen, J. S. Appl. Phys. Lett. 87, 122101 (2005).Google Scholar
14. Dearnaley, G. Stoneham, A. M. and Morgan, D. V. Rep. Prog. Phys. 33, 1129 (1970).Google Scholar
15. Bandyopadhyay, A. and Pal, A. J. J. Phys. Chem. B 109, 6084 (2005).Google Scholar
16. Sawa, A. Fujii, T. Kawasaki, M. and Tokurad, Y. Appl. Phys. Lett. 85, 4073 (2004).Google Scholar
17. Beck, A. Bednorz, J. G. Gerber, Ch., Rossel, C. and Widmer, D. Phys. Lett. 77, 139 (2000).Google Scholar
18. Kim, D. C. Lee, M. J. Ahn, S. E. Seo, S. Park, J. C. Yoo, I. K. Beak, I. G. Kim, H. J. Lee, J. E. Park, S. O. Kim, H. S. Chung, U-I, Moon, J. T. and Ryu, B. I. Appl. Phys. Lett 88, 232106 (2006).Google Scholar
19. Leea, M. D. Lob, C. K. Penga, T. Y. Chena, S. Y. and Yaoa, Y.D., Magnetism, J. and Magnetic Materials 310, e1031 (2007).Google Scholar
20. Shang, D. S. Chen, L. D. Wang, Q. Wu, Z. H. , Zhang, W. Q. and Li, X. M. J. Phys. D: Appl. Phys. 40, 53735376 (2007).Google Scholar
21. Ling, Q. Song, Y. Ding, S. J. Zhu, C. Chan, D. S. H. Kwong, D.-L., Kang, E.-T., and Neoh, K. G. Adv. Mater. (Weinheim, Ger.) 17, 455 (2005).Google Scholar
22. Chu, C. W. Quyang, J. Tseng, J. H. and Yang, Y. Adv. Mater. (Weinheim, Ger.) 17, 1440 (2005).Google Scholar
23. Smith, S. and Rorrest, S. R. Appl. Phys. Lett. 84, 5019 (2004).Google Scholar
24. Chen, J. and Ma, D. Appl. Phys. Lett. 87, 023505 (2005).Google Scholar
25. Tang, W. Shi, H. Z. Xu, G. Ong, B. S. Popovic, Z. D. Deng, J. C. Zhao, J. and Rao, G. H. Adv. Mater. (Weinheim, Ger.) 17, 2307 (2005).Google Scholar
26. Yoon, W. J. Chung, S. Y. Berger, P. R. and Asar, S. M. Appl. Phys. Lett. 87, 203506 (2005).Google Scholar
27. Chen, J. Wang, W. Reed, M. A. Rawlett, A. M. Price, D. W. and Tour, J. M. Appl. Phys. Lett. 77, 1224 (2000).Google Scholar
28. Reed, M. A. Chen, J. Rawlett, A. M. Price, D. W. and Tour, J. M. Appl. Phys. Lett. 78, 3735 (2001).Google Scholar
29. Le, J. D. He, Y. Hoye, T. R. Mead, C. C. and Kiehl, R. A. Appl. Phys. Lett. 83, 5518 (2003).Google Scholar
30. Khondaker, S. I. Yao, Z. Cheng, L. Henderson, J. C. Yao, Y. X. and Tour, J. M. Appl. Phys. Lett. 85, 645 (2004).Google Scholar