Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T15:34:34.979Z Has data issue: false hasContentIssue false

The Effect of Aspect Ratio and SP2/SP3 Content on the Field Emission Properties of Carbon Films Grown by N2-Spiked PECVD

Published online by Cambridge University Press:  10 February 2011

William M. Tong
Affiliation:
Sandia National Laboratories, Livermore, CA 94550, USA
Lawrence S. Pan
Affiliation:
Sandia National Laboratories, Livermore, CA 94550, USA
Thomas E. Felter
Affiliation:
Sandia National Laboratories, Livermore, CA 94550, USA
Simone Anders
Affiliation:
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
Aline Cossy-Favre
Affiliation:
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
Thomas Stammler
Affiliation:
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
Get access

Abstract

We have deposited carbon films from mixtures of methane and N2 using Plasma Enhanced Chemical Vapor Deposition. By changing the percentage of N2 in the feed gas, we were able to produce films that have various aspect ratios and sp2/sp3 contents. The film with the highest field emission contains spears of aspect ratio of 10:1. We also found that in our sp3-rich films, higher sp2 content enhanced field emission. This is ascribed to improved charge transport to the field emission sites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Geis, M. W., Twichell, J. C., Macaulay, J., Okano, K., Appl. Phys. Lett. 67 (9), 1328 (1995).Google Scholar
[2] Okano, K., Koizumi, S., Silva, S. R. P., Amaratunga, G. A. J., Nature 381, 140 (1996)Google Scholar
[3] Xu, N. S., Latham, R. V., J. Phys. D 19, 477 (1986)Google Scholar
[4] Pan, L. S., Mat. Res. Soc. Symp. Proc. Vol. 416, Ed. Dreifus, D. L., Collins, A., Humphreys, T., Das, K., Pehrsson, P. E., 407 (1995)Google Scholar
[5] Talin, A. A., Felter, T. E., Friedmann, T. A., Sullivan, J. P., Siegal, M. P., J. Vac. Sci. Technol. A 14 (3), 1719 (1996)Google Scholar
[6] Bandis, C., Pate, B. B., Appl. Phys. Lett. 69 (3), 366 (1996)Google Scholar
[7] Glesner, J. W., Morrish, A. A., Appl. Phys. Lett. 69 (6), 785 (1996)Google Scholar
[8] Liu, J., Zhirnov, V.V., Wojak, G.J., Myers, A.F., Appl. Phys. Lett. 65 (22), 2842 (1994)Google Scholar
[9] Xu, N. S. in High Voltage Insulation, edited by Latham, R. (Academic Press, New York 1995), p. 126.Google Scholar
[10] Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D. R., Nature 347(6291), 354–8 (1990).Google Scholar
[11] Huffman, D. R., private communication.Google Scholar