Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:13:14.558Z Has data issue: false hasContentIssue false

The Effect of Anodization Time on the Properties of TiO2 Nanotube Humidity Sensors

Published online by Cambridge University Press:  14 December 2012

Reshmi Raman
Affiliation:
CIE-UNAM, Priv. Xochicalco S/N, Col. Centro, Temixco, Mor. 62580
Oscar A. Jaramillo
Affiliation:
CIE-UNAM, Priv. Xochicalco S/N, Col. Centro, Temixco, Mor. 62580
Marina E. Rincón*
Affiliation:
CIE-UNAM, Priv. Xochicalco S/N, Col. Centro, Temixco, Mor. 62580
*
*Corresponding author: [email protected]
Get access

Abstract

In this paper, the effect of anodization time on the properties of TiO2 nanotube humidity sensors is reported. TiO2 nanotube arrays were grown by anodization of Ti foil using diethylene glycol and ammonium fluoride. Highly ordered TiO2 nanotube arrays were obtained, with the length of tube increasing from 4 to 20 μm as the time of anodization increases, at the expense of nanotube integrity. Humidity sensors based on TiO2 nanotube arrays were fabricated in impedance mode with ITO as top contact. The results revealed that sensor performance does not correlate with anodization time, regardless of enhanced area, showing an optimum morphology at 4h and 10h. The increase resistivity of the sensors upon water exposure, a donor molecule, is explained by the lack of TiO2 stoichiometry and the fluctuations in the concentration of oxygen vacancies.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Z., Shi, L., Wu, F., Yuan, S., Zhao, Y., Zhang, M., Nanotechnology 22, 275502 (2011).CrossRefGoogle Scholar
Yao, L.J., Zheng, M.J., Li, H.B., Ma, L., Shen, W.Z., Nanotechnology 20, 395501 (2009).CrossRefGoogle Scholar
Li, L.Y., Dong, Y.F., Jiang, W.F., Ji, H.F., Li, X.J., Thin Solid Films 517, 948 (2008).CrossRefGoogle Scholar
Wang, Q., Pan, Y.Z., Huang, S.S., Ren, S.T., Li, P., Li, J.J., Nanotechnology 22, 025501 (2011).CrossRefGoogle Scholar
Zhang, H.N., Li, Z.Y., Wang, W., Wang, C., Liu, L., J. Am. Ceram. Soc. 93, 142 (2010).CrossRefGoogle Scholar
Zhang, N., Yu, K., Zhu, Z.Q., Jiang, D.S., Sensor Actuator B 143, 245 (2008).CrossRefGoogle Scholar
Wang, X.F., Ding, B., Yu, J.Y., Wang, M.R., Pan, F.K., Nanotechnology 21, 055502 (2010).CrossRefGoogle Scholar
Han, D.S. and Gong, M.S., Macromol. Res. 18, 260 (2010).CrossRefGoogle Scholar
Lv, X., Li, Y., Li, P., Yang, M.J., Sensor Actuator B 135, 581 (2009).CrossRefGoogle Scholar
Yuan, C.H., Xu, Y.T., Deng, Y.M., Jiang, N., He, N., Dai, L.Z., Nanotechnology 21, 415501 (2010).CrossRefGoogle Scholar
Wang, J., Su, M.Y., Qi, J.Q., Chang, L.Q., Sensor Actuator B 139, 418 (2009).CrossRefGoogle Scholar
Gong, J., Li, Y.H., Hu, Z.S., Zhou, Z.Z., Deng, Y.L., J. Phys. Chem. C 114, 9970 (2010).CrossRefGoogle Scholar
Wang, G., Wang, Q., Lu, W., Li, J.H., J.Phys. Chem. B 110, 22029 (2006).CrossRefGoogle Scholar
Zhang, Y.Y., Fu, W.Y., Yang, H.B., Qi, Q., Zeng, Y., Zhang, T., Ge, R.X., Zou, G.T., Appl. Surf. Sci. 254, 5545 (2008).CrossRefGoogle Scholar
Hatfield, J. A., Environmental Progress 23, 45 (2004).CrossRefGoogle Scholar
Kim, I.D., Rothschild, A., Lee, B.H., Kim, D.Y., Jo, S.M., Tuller, H.L., Nano Lett. 6, (2009). (2006). Google Scholar