Article contents
Effect of Ambient Atmosphere on Thin Film Reaction of Si3N4 with Ti
Published online by Cambridge University Press: 21 February 2011
Abstract
The reaction of sputtered deposited Ti films of 100 nm thick with low pressure chemical vapor deposited Si3N4 films (300 nm thick) was studied in N2 or Ar, in a rapid thermal annealer. Reactions are followed using x-ray diffraction, Auger electron spectroscopy, and transmission electron microscopy. In argon, the Si3N4 and Ti reaction at low temperatures led to the product formation of two layer structure (TiN/Ti5Si3), with some contaminant oxygen and nitrogen released from the reaction uniformly dissolved throughout the remaining unreacted Ti. At higher temperatures, a three layer structure, TiN/TixSiy/TiN, on unreacted Si3N4 was developed. With increasing temperature the value of x and y decreased from 5 to 0 and 3 to 1, respectively. Reactions in N2 ambient, irrespective of temperature, always produced the three layer structure, but the thickness of TixSiy layer was much smaller than that produced in argon ambient for the corresponding temperatures. The reaction mechanism can be explained in terms of relative diffusion coefficients and the stability of the interfaces.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1990
References
- 1
- Cited by