Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:33:41.770Z Has data issue: false hasContentIssue false

Effect of Alloy Composition & Helium ion-irradiation on the Mechanical Properties of Tungsten, Tungsten-Tantalum & Tungsten-Rhenium for Fusion Power Applications

Published online by Cambridge University Press:  14 March 2013

Christian E. Beck
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
Steve G. Roberts
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
Philip D. Edmondson
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
David E. J. Armstrong
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
Get access

Abstract

Model alloys have been made of pure W and 1% & 5% W-Ta and W-Re. Indentation hardness and modulus data were obtained by nanoindentation to assess the effect of composition on mechanical properties. Results showed that both the Ta and Re compositions hardened with increasing alloy content, greater in the W-5%Ta composition which showed an increase of 1.03GPa (17%), compared to a 0.43GPa (7%) increase in W-5%Re. The samples also showed very small increases in modulus of ∼ 25GPa (6%) in both W-5%Re and W-5%Ta. The samples were implanted with 3000appm concentration of helium. All samples show a substantial increase in hardness of up to 107% in the case of pure W. An appreciable difference in modulus is also seen in all samples. Initial TEM work has shown no visible He bubbles, suggesting that the mechanical properties changes are due to He-vacancy cluster formation below the resolvable limit.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolt, H., Barabash, V., Krauss, W., Linke, J., Neu, R., Suzuki, S. & Yoshida, N., J. Nucl Mater, 329333, A, pp6673, (2004)10.1016/j.jnucmat.2004.04.005CrossRefGoogle Scholar
Yoshida, N., J. Nucl Mater, 266269, pp197206, (1999)10.1016/S0022-3115(98)00817-4CrossRefGoogle Scholar
Baldwin, M. & Doerner, J., Nucl Fusion, 48, pp15, (2008)10.1088/0029-5515/48/3/035001CrossRefGoogle Scholar
Xu, Q., Yoshida, N. and Yoshiie, T., Mater T JIM, 46, 6, pp12551260, (2005)10.2320/matertrans.46.1255CrossRefGoogle Scholar
Norajitra, P. & 15 other authors, J. Nucl Mater, 367370, B, pp14161421, (2007)10.1016/j.jnucmat.2007.04.027CrossRefGoogle Scholar
Causey, R. & Venhaus, T., Phys. Scr, T94, pp915, (2001)10.1238/Physica.Topical.094a00009CrossRefGoogle Scholar
Baluc, N., Abe, K., Boutard, J.L., Chernov, V.M., Diegele, E., Jitsukawa, S., Kimura, A., Klueh, R.L., Kohyama, A., Kurtz, R.J., Lässer, R., Matsui, H., Möslang, A., Muroga, T., Odette, G.R., Tran, M.Q., van der Schaaf, B., Wu, Y., Yu, J. and Zinkle, S.J., Nucl Fusion, 47, ppS696S717, (2007)10.1088/0029-5515/47/10/S18CrossRefGoogle Scholar
Rieth, M. & Hoffmann, A., Int. J. Refract. Met. H, 28, pp679686, (2010)10.1016/j.ijrmhm.2010.04.010CrossRefGoogle Scholar
Gilbert, M. & Sublet, J-Ch., Nuclear Fusion, 51, 4, (2011)10.1088/0029-5515/51/4/043005CrossRefGoogle Scholar
Reith, M. & 70 other authors, J. Nucl. Mater, 432, 1–3, pp482500, (2013)10.1016/j.jnucmat.2012.08.018CrossRefGoogle Scholar
Lewis, M.B., Packan, N.H., Wells, G.F. & Buhl, R.A., Nucl. Instrum. Methods, 167, pp233247, (1979)10.1016/0029-554X(79)90011-9CrossRefGoogle Scholar
Armstrong, D.E.J., Yi, X., Marquisa, E.A. & Roberts, S.G., J. Nucl Mater, 432, 1–3, pp428436, (2013)10.1016/j.jnucmat.2012.07.044CrossRefGoogle Scholar
Hardie, C. D. & Roberts, S. G., J. Nucl. Mater, 433, 1–3, pp174179, (2013)10.1016/j.jnucmat.2012.09.003CrossRefGoogle Scholar
Zenobia, S. J., Garrison, L. M., Kulcinski, G. L., J. Nucl. Mater, 425, 1–3, pp8392, (2012)10.1016/j.jnucmat.2011.10.029CrossRefGoogle Scholar
Oliver, W. C. & Pharr, G. M., J. Mater. Res, 7, 15641583, (1992)10.1557/JMR.1992.1564CrossRefGoogle Scholar
International A. ASTM E521 – 96, Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation, 2009, ASTM International, West Conshohocken, PA, (2009) Google Scholar
Ayres, R. A., Shannette, G. W. & Stein, D. F., J. Appl. Phys, 46, 4, pp15261530, (1975)10.1063/1.321804CrossRefGoogle Scholar
National Physical Laboratories, MTDATA Calculated Phase Diagram http://resource.npl.co.uk/mtdata/phdiagrams/taw.htm Google Scholar