Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T08:47:48.315Z Has data issue: false hasContentIssue false

The Effect of Alkali Metal Cations on The Structure of Dissolved Silicate Oligomers

Published online by Cambridge University Press:  28 February 2011

Alon V. McCormick
Affiliation:
Center for Advanced Materials, Lawrence Berkeley Laboratory, and Department of Chemical Engineering, University of California, Berkeley, CA 94720
A. T. Bell
Affiliation:
Center for Advanced Materials, Lawrence Berkeley Laboratory, and Department of Chemical Engineering, University of California, Berkeley, CA 94720
C. J. Radke
Affiliation:
Center for Advanced Materials, Lawrence Berkeley Laboratory, and Department of Chemical Engineering, University of California, Berkeley, CA 94720
Get access

Abstract

By means of 29Si spectroscopy, it is established that the distribution of silicate anions in alkaline silicate solutions is a moderate function of base composition. At a fixed SiO2. concentration and silicate ratio, the proportion of Si present in oligomeric and cage-like structures increases in progressing from Li to Cs hydroxide. Interactions between alkali metal cations and silicate anions are investigated using NMR spectroscopy of the cations; in this way the concentration of ion pairs is measured as a function of cation size. As a result the silicate redistribution is ascribed to cation-silicate anion pairing and to a higher selectivity for ion pairing by large silicate anions as cation size increases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barrer, R. M., The Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982.Google Scholar
2. Zhdanov, S. P., Molecular Sieves I, Adv. Chem. Ser. vol. 101, Am. Chem. Soc., 1971, p. 20.Google Scholar
3. Derouane, E., Zeolites 2, 299 (1982).Google Scholar
4. Engelhardt, G., Zeolites 5, 49 (1985).Google Scholar
5. Wieker, W., and Fahlke, B., Zeolites (Drzaj, H., Hocevar, S., and Pejovnik, S., eds.), Elsevier, 1987, p. 161.Google Scholar
6. T., Marsmann, Z. Naturforschung 295, 495 (1974).Google Scholar
7. Z., Engelhardt, An. Allg. Chem. 418, 17 (1975).Google Scholar
8. Harris, R. K., and Knight, C. T. G., J. Chem. Soc, Faraday 2 79, 1525 and 1539 (1983).Google Scholar
9. McCormick, A. V., Bell, A. T., and Radke, C. J., Zeolites 7, 183 (1987).CrossRefGoogle Scholar
10. McCormick, A. V., Bell, A. T., and Radke, C. J., to be published.Google Scholar
11. Dent Glasser, L. S., and Harvey, G., Proc. 6th Intl. Zeol. Conf. (Bisio, A. and Olson, D. H., eds.), Butterworth, Guildford, U.K., 1984, p. 925.Google Scholar
12. McCormick, A. V., Bell, A. T., and Radke, C. J., New Developments in Zeolite Science and Technology (Murakami, Y. et al., eds.), Studies in Surf. Sci. and Cat. vol. 26, Elsevier, 1986, p.247.Google Scholar
13. Ray, W.H., and Plaisted, R. J., J. Am. Chem. Soc. 108, 7159 (1986).Google Scholar
14. Fukushima, E., and Roeder, S. B. W., Experimental Pulse NMR, Addison-Wesley, Reading, MA, 1981.Google Scholar
15. Gmelin Handbuch der Anorganische Chemie, Springer-Verlag, Berlin.Google Scholar
16. Bockris, J. O'M., and Reddy, A. K. N., odern Electrochemistry, Plenum, New York, 1970.Google Scholar
17. Kinrade, S. D., and Swaddle, T. W., J. Am. Chem. Soc. 108, 7159, (1986).Google Scholar
18. lier, R. K., The Chemistry of Silica, Wiley, New York, 1979.Google Scholar
19. McCormick, A.V., Ph.D. thesis, University of California, Berkeley, 1987.Google Scholar