Published online by Cambridge University Press: 16 February 2011
This paper explores the behavior of the interface of glass fiber and cementitious matrix under the effect of aging. Pull-out tests of multiple alkali resistant glass fiber strands embedded in portland cement paste matrix were conducted. Four different curing regimes of 3 and 14 days normal curing, in addition to 3 and 7 days accelerated aging were employed. A recently developed method of characterizing interfacial properties was used to identify and evaluate the important parameters at interface. The experimental data are presented on the parameter of shear stiffness of a fiber-matrix boundary layer, the shear bond strength, the frictional bond strength and the specific surface energy as a function of fiber embedded length. It was observed that aging had a larger effect on the stiffness of the interface, the shear bond strength and the specific surface energy than on the frictional bond.