No CrossRef data available.
Published online by Cambridge University Press: 18 April 2012
The effect of phase separation of the donor-acceptor (DA) blend on the dominant recombination mechanism in polymer-fullerene [(poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM)] based bulk heterojunction (BHJ) cells has been investigated. Coarse (70-150 nm) and fine (20-25 nm) phase separated blends and corresponding devices were prepared using chlorobenzene (CB) and ortho-dichlorobenzene (1,2-DCB) as spin casting solvents respectively. Nanoscale mobility measurements indicated highly unbalanced charge transport in coarse morphology based (CB cast) devices. Linear dependence of short circuit current (Jsc) vs. light intensity (I) suggested first order monomolecular (MR) recombination in the fine phase separated devices (1,2-DCB cast) whereas sub-linearity suggested dominant role of bimolecular (BR) recombination in coarse phase separated devices (CB cast). Improved device efficiency of 1,2-DCB based devices (η ≈ 2.54 %) compared to CB (η ≈ 0.9 %) may be attributed to reduced BR recombination as a result of finer phase separation.