Article contents
Dynamics of the KrF* Laser Multiphoton Dissociation of a Series of Arene Chromium Tricarbonyls
Published online by Cambridge University Press: 25 February 2011
Abstract
The KrF* (248 nim) laser multiphoton dissociation (MPD) of a series of (arene)chromium tricarbonyls has been investigated in the gas-phase using emission spectroscopy to detect the excited state photoproducts. In the MPD of all compounds studied, chromium atoms are formed in a variety of electronically excited states via a two-channel dissociation mechanism. The predominant pathway for formation of the ground electronic state and the lowest excited states is by a sequential absorption/fragmentation process, where the product of the one-photon dissociation of the parent molecule absorbs an additional photon and dissociates to Cr(I). The higher energy Cr(I) states are formed exclusively by a direct dissociation process, where the parent absorbs multiple photons prior to dissociation. The distribution of excited chromium atoms formed in the direct channel is statistical for all compounds studied and is independent of the nature of the arene ligand. In contrast, the distribution of Cr(I) states formed via the sequential dissociation channel is strongly dependent on the vibrational density of states in the arene ligand.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1989
References
REFERENCES
- 1
- Cited by