Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:46:58.215Z Has data issue: false hasContentIssue false

Dynamics of hydrogen in Pr2Fe17H4 and Pr2Fe17H5

Published online by Cambridge University Press:  01 February 2011

Eugene Mamontov
Affiliation:
[email protected], NIST Center for Neutron Research, 100 Bureau Dr.,, MS 8562, Gaithersburg, MD, 20899-8562, United States
Terrence J Udovic
Affiliation:
[email protected], NIST Center for Neutron Research, United States
John J Rush
Affiliation:
[email protected], NIST Center for Neutron Research, United States
Olivier Isnard
Affiliation:
[email protected], CNRS, France
Get access

Abstract

We describe a study of the dynamics of hydrogen in Pr2Fe17H4, where isolated hexagons formed by the interstitial tetrahedral (t) sites of the metal lattice are populated by mobile hydrogen atoms. An activation energy of 0.10 eV has been determined for a localized jump process involving the hopping of these hydrogen atoms among adjacent vertices of each hexagon, slightly lower than that for hydrogen hopping in Pr2Fe17H5, where each hexagon is occupied by two hydrogen atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Isnard, O., Miraglia, S., Soubeyroux, J. L., Fruchart, D., and Stergiou, A., J. Less-Common Met. 162, 273 (1990).Google Scholar
2. Isnard, O., Miraglia, S., Fruchart, D., and Deportes, J., J. Magn. Magn. Mater. 103, 157 (1992).Google Scholar
3. Isnard, O., Miraglia, S., Soubeyroux, J. L., Fruchart, D., and L'heritier, P., J. Magn. Magn. Mater. 137, 151 (1994).Google Scholar
4. Grandjean, F., Hautot, D., Long, G. J., Isnard, O., Miraglia, S., and Fruchart, D., J. Appl. Phys. 79, 4584 (1996).Google Scholar
5. Isnard, O., Guillot, M., Miraglia, S., and Fruchart, D., J. Appl. Phys. 79, 4608 (1996).Google Scholar
6. Grandjean, F., Hautot, D., Long, G. J., Isnard, O., Miraglia, S., and Fruchart, D., J. Appl. Phys. 85, 4654 (1999).Google Scholar
7. Hautot, D., Long, G. J., Grandjean, F., Isnard, O., and Miraglia, S., J. Appl. Phys. 86, 2200 (1999).Google Scholar
8. Isnard, O., Miraglia, S., Soubeyroux, J. L., and Fruchart, D., Solid State Commun. 81, 13 (1992).Google Scholar
9. Isnard, O., Soubeyroux, J. L., Miraglia, S., Fruchart, D., Garcia, L. M., and Bartolome, J., Physica B 180–181, 629 (1992).Google Scholar
10. Switendick, A. C., Z. Phys. Chem. 117, 89 (1979).Google Scholar
11. Mamontov, E., Udovic, T. J., Isnard, O., and Rush, J. J., Phys. Rev. B 70, 214305 (2004).Google Scholar
12. Isnard, O., Sippel, A., Loewenhaupt, M., and Bewley, R., J. Phys. Cond. Matter 13, 1 (2001).Google Scholar
13. Isnard, O., Hautot, D., Long, G. J., and Grandjean, F., J. Appl. Phys. 88, 2750 (2000).Google Scholar
14. Udovic, T. J., Neumann, D. A., Leão, J., and Brown, C. M., Nucl. Instr. Meth. A 517, 189 (2004).Google Scholar
15. Meyer, A., Dimeo, R. M., Gehring, P. M., and Neumann, D. A., Rev. Sci. Inst. 74, 2759 (2003).Google Scholar
16. Bée, M., Quasielastic Neutron Scattering (Hilger, Bristol, 1988) pp. 198201.Google Scholar