Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T20:19:43.019Z Has data issue: false hasContentIssue false

Dynamics of Charge Transfer Excitons Recombination in Polymer/Fullerene Solar Cells

Published online by Cambridge University Press:  14 January 2011

Markus Hallermann
Affiliation:
Photonics and Optoelectronics Group, Department of Physics and CeNS, Ludwig-Maximilians-University Munich, Munich 80799, Germany
Felix Deschler
Affiliation:
Photonics and Optoelectronics Group, Department of Physics and CeNS, Ludwig-Maximilians-University Munich, Munich 80799, Germany
Josef Berger
Affiliation:
Photonics and Optoelectronics Group, Department of Physics and CeNS, Ludwig-Maximilians-University Munich, Munich 80799, Germany
Elizabeth von Hauff
Affiliation:
Energy and Semiconductor Research Laboratory, Institute of Physics, Carl von Ossietzky University Oldenburg, Oldenburg 26111, Germany
Enrico Da Como
Affiliation:
Photonics and Optoelectronics Group, Department of Physics and CeNS, Ludwig-Maximilians-University Munich, Munich 80799, Germany
Get access

Abstract

Among the different recombination mechanisms in organic solar cells the photoluminescence (PL) of charge transfer excitons (CTEs) has been identified has one of the most important, impacting both the open circuit voltage and the short circuit current. Here, we study their recombination dynamics, monitoring the decay of the PL on a time scale spanning three orders of magnitude from nanoseconds to microseconds. As a model system we investigate blends of the conjugated polymer poly(2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene-vinylene) (MDMO-PPV) and the fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM). We observe that the dynamics of recombination follows a power-law, which is independent of sample morphology. Upon application of a transient electric field, which is capable of separating the bound charge pairs, we observe different dynamics of recombination only for the separated pairs. Those also follow a power-law and show a strong dependence on the film morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chen, H. Y., Hou, J. H., Zhang, S. Q., Liang, Y. Y., Yang, G. W., Yang, Y., Yu, L. P., Wu, Y., and Li, G., Nat. Photonics 3, 649 (2009).10.1038/nphoton.2009.192Google Scholar
[2] Morita, S., Zakhidov, A. A., and Yoshino, K., Solid State Commun. 82, 249 (1992).10.1016/0038-1098(92)90636-NGoogle Scholar
[3] Yu, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger, A. J., Science 270, 1789 (1995).Google Scholar
[4] Yang, X. N., Loos, J., Veenstra, S. C., Verhees, W. J. H., Wienk, M. M., Kroon, J. M., Michels, M. A. J., and Janssen, R. A. J., Nano Lett. 5, 579 (2005).10.1021/nl048120iGoogle Scholar
[5] Kim, Y., Cook, S., Tuladhar, S. M., Choulis, S. A., Nelson, J., Durrant, J. R., Bradley, D. D. C., Giles, M., McCulloch, I., Ha, C. S., and Ree, M., Nat. Mater. 5, 197 (2006).10.1038/nmat1574Google Scholar
[6] He, X. M., Gao, F., Tu, G. L., Hasko, D., Huttner, S., Steiner, U., Greenham, N. C., Friend, R. H., and Huck, W. T. S., Nano Lett. 10, 1302 (2010).Google Scholar
[7] Nogueira, A. F., Montanari, I., Nelson, J., Durrant, J. R., Winder, C., and Sariciftci, N. S., J. Phys. Chem. B 107, 1567 (2003).10.1021/jp027101zGoogle Scholar
[8] Veldman, D., Ipek, O., Meskers, S. C. J., Sweelssen, J., Koetse, M. M., Veenstra, S. C., Kroon, J. M., van Bavel, S. S., Loos, J., and Janssen, R. A. J., J. Am. Chem. Soc. 130, 7721 (2008).Google Scholar
[9] Hallermann, M., Haneder, S., and Da Como, E., Appl. Phys. Lett. 93, 053307 (2008).Google Scholar
[10] Hallermann, M., Kriegel, I., Da Como, E., Berger, J. M., von Hauff, E., and Feldmann, J., Adv. Funct. Mater. 19, 3662 (2009).Google Scholar
[11] Haneder, S., Da Como, E., Feldmann, J., Rothmann, M. M., Strohriegl, P., Lennartz, C., Molt, O., Munster, I., Schildknecht, C., and Wagenblast, G., Adv. Funct. Mater. 19, 2416 (2009).Google Scholar
[12] Reufer, M., Walter, M. J., Lagoudakis, P. G., Hummel, B., Kolb, J. S., Roskos, H. G., Scherf, U., and Lupton, J. M., Nat. Mater. 4, 340 (2005).10.1038/nmat1354Google Scholar
[13] Schweitzer, B., Arkhipov, V. I., and Bässler, H., Chem. Phys. Lett. 304, 365 (1999).Google Scholar
[14] Vandewal, K., Gadisa, A., Oosterbaan, W. D., Bertho, S., Banishoeib, F., Van Severen, I., Lutsen, L., Cleij, T. J., Vanderzande, D., and Manca, J. V., Adv. Funct. Mater. 18, 2064 (2008).Google Scholar
[15] Hallermann, M., Da Como, E., Feldmann, J., Izquierdo, M., Filippone, S., Martin, N., Juchter, S., and von Hauff, E., Appl. Phys. Lett. 97 (2010).Google Scholar