Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:32:56.709Z Has data issue: false hasContentIssue false

Dynamics of Anomalous Temperature-Induced Emission Shift in MOCVD-grown (Al, In)GaN Thin Films

Published online by Cambridge University Press:  03 September 2012

Yong-Hoon Cho
Affiliation:
Center for Laser and Photonics Research and Department of Physics Oklahoma State University, Stillwater, OK 74078 Center for Near-field Atom-photon Technology and Department of Physics Seoul National University, Seoul 151-742, Korea
G. H. Gainer
Affiliation:
Center for Laser and Photonics Research and Department of Physics Oklahoma State University, Stillwater, OK 74078
J. B. Lam
Affiliation:
Center for Laser and Photonics Research and Department of Physics Oklahoma State University, Stillwater, OK 74078
J. J. Song
Affiliation:
Center for Laser and Photonics Research and Department of Physics Oklahoma State University, Stillwater, OK 74078
W. Yang
Affiliation:
Honeywell Technology Center, 12001 State Highway 55, Plymouth, MN 55441
W. Jhe
Affiliation:
Center for Near-field Atom-photon Technology and Department of Physics Seoul National University, Seoul 151-742, Korea
Get access

Abstract

We present a comprehensive study of the optical characteristics of (Al, In)GaN epilayers measured by photoluminescence (PL), integrated PL intensity, and time-resolved PL spectroscopy. For not only InGaN, but also AlGaN epilayers with large Al content, we observed an anomalous PL temperature dependence: (i) an “S-shaped” PL peak energy shift (decrease-increase-decrease) and (ii) an “inverted S-shaped” full width at half maximum (FWHM) change (increase-decrease-increase) with increasing temperature. Based on time-resolved PL, the S shape (inverted S shape) of the PL peak position (FWHM) as a function of temperature, and the much smaller PL intensity decrease in the temperature range showing the anomalous emission behavior, we conclude that strong localization of carriers occurs in InGaN and even in AlGaN with rather high Al content. We observed that the following increase with increasing Al content in AlGaN epilayers: (i) a Stokes shift between the PL peak energy and the absorption edge, (ii) a redshift of the emission with decay time, (iii) the deviations of the PL peak energy, FWHM, and PL intensity from their typical temperature dependence, and (iv) the corresponding temperature range of the anomalous emission behavior. This indicates that the band-gap fluctuation responsible for these characteristics is due to energy tail states caused by non-random inhomogeneous alloy potential variations enhanced with increasing Al content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys. Part 2 34, L1332 (1995).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 69, 4056 (1996).Google Scholar
3. Lim, B. W., Chen, Q. C., Yang, J. Y., and Khan, M. A., Appl. Phys. Lett. 68, 3761 (1996).Google Scholar
4. Wu, Y. F., Keller, B. P., Keller, S., Kapolnek, D., Kozodoy, P., DenBaars, S. P., and Mishra, U. K., Appl. Phys. Lett. 69, 1438 (1996).Google Scholar
5. Yang, X. H., Schmidt, T. J., Shan, W., Song, J. J., and Goldenberg, B., Appl. Phys. Lett. 66, 1 (1995).Google Scholar
6. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
7. Jeon, E. S., Kozlov, V., Song, Y.-K., Vertikov, A., Kuball, M., Nurmikko, A. V., Liu, H., Chen, C., Kern, R. S., Kuo, C. P., and Craford, M. G., Appl. Phys. Lett. 69, 4194 (1996).Google Scholar
8. Perlin, P., Iota, V., Weinstein, B. A., niewski, P. Wi, Suski, T., Eliseev, P. G., and ski, M. Osi, Appl. Phys. Lett. 70, 2993 (1997).Google Scholar
9. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, Sz., Fujita, Sg., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
10. Narukawa, Y., Kawakami, Y., Fujita, Sz., Fujita, Sg., and Nakamura, S., Phys. Rev. B 55, R1938 (1997).Google Scholar
11. Cho, Y. H., Gainer, G. H., Fischer, A. J., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 73, 1370 (1998).Google Scholar
12. Eliseev, P. G., Perlin, P., Lee, J., and ski, M. Osi, Appl. Phys. Lett. 71, 569 (1997).Google Scholar
13. Zolina, K. G., Kudryashov, V. E., Turkin, A. N., and Yunovich, A. E., MRS Internet J. Nitride Semicond. Res. 1, Art, 11 (1996).Google Scholar
14. Matsuoka, T., MRS Internet J. Nitride Semicond. Res. 3, 54 (1998).Google Scholar
15. Cho, Y. H., Little, B. D., Gainer, G. H., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., MRS Internet J. Nitride Semicond. Res. 4S1, G2.4 (1999).Google Scholar
16. Varshni, Y. P., Physica 34, 149 (1967).Google Scholar
17. Cho, Y. H., Gainer, G. H., Lam, J. B., Song, J. J., Yang, W., and McPherson, S. A., Mat. Res. Soc. Symp. Proc. 572, 457 (1999).Google Scholar
18. Driessen, F. A. J. M., Bauhuis, G. J., Olsthoorn, S. M., and Giling, L. J., Phys. Rev. B 48, 7889 (1993).Google Scholar
19. Yamashita, K., Kita, T., Nakayama, H., and Nishino, T., Phys. Rev. B 55, 4411 (1997).Google Scholar
20. Chomette, A., Deveaud, B., Regreny, A., and Bastard, G., Phys. Rev. Lett. 57, 1464 (1986).Google Scholar
21. Yamamoto, T., Kasu, M., Noda, S., and Sasaki, A., J. Appl. Phys. 68, 5318 (1990).Google Scholar
22. Korakakis, D., Ludwig, K. F. Jr., and Moustakas, T. D., Appl. Phys. Lett. 71, 72 (1997).Google Scholar