Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T22:58:50.734Z Has data issue: false hasContentIssue false

Dynamics of a Supercooled Lennard-Jones System: Qualitative and Quantitative Tests of Mode-Coupling Theory

Published online by Cambridge University Press:  10 February 2011

Walter Kob*
Affiliation:
Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
Markus Nauroth
Affiliation:
Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
*
[*]Electronic mail: [email protected]http://www.cond-mat.physik.uni-mainz.de/~kob/home_kob.html
Get access

Abstract

We present the results of a molecular dynamics computer simulation of a supercooled binary Lennard-Jones mixture. By investigating the temperature dependence of the diffusion constant and of the intermediate scattering function, we show that the ideal version of the mode-coupling theory of the glass transition is able to give a good qualitative description of the dynamics of this system. Using the partial structure factors, as determined from the simulation, as input, we solve the mode-coupling equations in the long time limit. From the comparison of the prediction of the theory for the critical temperature, the exponent parameter, the wave-vector dependence of the nonergodicity parameters and the critical amplitudes with the results of the simulation, we conclude that the theory is also able to predict correctly the non-universal properties of the dynamics of a supercooled simple liquid.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Götze, W., in Liquids, Freezing and the Glass Transition Eds.: Hansen, J. P., Levesque, D. and Zinn-Justin, J., Les Houches. Session LI, 1989, (North-Holland, Amsterdam, 1991)i, p. 287;Google Scholar
Götze, W. and Sjögren, L., Rep. Prog. Phys. 55, 241 (1992);Google Scholar
Schilling, R., in Disorder Effects on Relaxational Processes Eds.: Richert, R. and Blumen, A., (Springer, Berlin, 1994), p. 193;Google Scholar
Cummins, H. Z., Li, G., Du, W. M., and Hernandez, J., Physica A 204, 169 (1994);Google Scholar
Kob, W., in Experimental and Theoretical Approches to Supercooled Liquids: Advances and Novel Applications Eds.: Fourkas, J., Kivelson, D., Mohanty, U. and Nelson, K., (ACS, Washington, 1997).Google Scholar
[2] Theme Issue on Relaxation Kinetics in Supercooled Liquids-Mode Coupling Theory and its Experimental Tests; Ed. Yip, S.. Volume 24, No. 6–8 (1995) of Transport Theory and Statistical Physics.Google Scholar
[3] Franosch, T., Fuchs, M., Götze, W., Mayr, M. R., and Singh, A. P., (preprint 1996).Google Scholar
[4] Kob, W. and Andersen, H. C., Phys. Rev. Lett. 73, 1376 (1994).Google Scholar
[5] Kob, W. and Andersen, H. C., Phys. Rev. E 51, 4626 (1995).Google Scholar
[6] Barrat, J.-L. and Latz, A., J. Phys.: Condens. Matter 2, 4289 (1990).Google Scholar
[7] Fuchs, M., PhD Thesis, University of Munich, 1993.Google Scholar
[8] Nauroth, M. and Kob, W., Phys. Rev. E (in press);Google Scholar
Nauroth, M., Diploma Thesis, University of Mainz 1995.Google Scholar
[9] Kob, W. and Andersen, H. C., Phys. Rev. E 52, 4134 (1995).Google Scholar
[10] Gleim, T., Kob, W. and Binder, K., (unpublished).Google Scholar
[11] Bernu, B., Hansen, J.-P., Hiwatari, Y. and Pastore, G., Phys. Rev. A 36, 4891 (1987).Google Scholar
[12] Hansen, J.-P. and McDonald, I. R., Theory of Simple Liquids (Academic, London, 1986).Google Scholar
[13] Pusey, P. N. and van Megen, W., Phys. Rev. Lett. 59, 2083 (1987);Google Scholar
van Megen, W., Underwood, S. M. and Pusey, P. N., Phys. Rev. Lett. 67, 1586 (1991);Google Scholar
van Megen, W. and Underwood, S. M., Phys. Rev. E 47, 248 (1993);Google Scholar
van Megen, W. and Underwood, S. M., Phys. Rev. Lett. 70, 2766 (1993);Google Scholar
van Megen, W. and Underwood, S. M., Phys. Rev. E 49, 4206 (1994).Google Scholar
[14] Götze, W. and Sjögren, L., Phys. Rev. A 43, 5442 (1991).Google Scholar