Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:53:08.221Z Has data issue: false hasContentIssue false

Dynamics in a Nonfragile Glass-Forming Liquid

Published online by Cambridge University Press:  10 February 2011

B. Rufflé
Affiliation:
Groupe Matière Condensée et Matériaux, UMR CNRS 6626, Université de Rennes 1, 35042 Rennes, France
S. Beaufils
Affiliation:
Groupe Matière Condensée et Matériaux, UMR CNRS 6626, Université de Rennes 1, 35042 Rennes, France
J. Etrillard
Affiliation:
Groupe Matière Condensée et Matériaux, UMR CNRS 6626, Université de Rennes 1, 35042 Rennes, France
J. Gallier
Affiliation:
Groupe Matière Condensée et Matériaux, UMR CNRS 6626, Université de Rennes 1, 35042 Rennes, France
B. Toudic
Affiliation:
Groupe Matière Condensée et Matériaux, UMR CNRS 6626, Université de Rennes 1, 35042 Rennes, France
C. Ecolivet
Affiliation:
Groupe Matière Condensée et Matériaux, UMR CNRS 6626, Université de Rennes 1, 35042 Rennes, France
G. Coddens
Affiliation:
Laboratoire Léon Brillouin, CE Saclay, 91191 Gif Sur Yvette, France
J. P. Ambroise
Affiliation:
Laboratoire Léon Brillouin, CE Saclay, 91191 Gif Sur Yvette, France
E. Guéguen
Affiliation:
Groupe Verres et Céramiques, URA CNRS 1496, Université de Rennes 1, 35042 Rennes, France
R. Marchand
Affiliation:
Groupe Verres et Céramiques, URA CNRS 1496, Université de Rennes 1, 35042 Rennes, France
Get access

Abstract

The dynamics of Na0.5Li0.5PO3 (Tg = 515 K, Tm = 749 K) a non fragile glass forming liquid has been investigated over a large temperature range (300 − 1000 K.) and in a wide energy window using various experimental techniques. The susceptibility spectra obtained by coherent neutron scattering and depolarized light scattering between 1 and 104 GHz show mainly two contributions: a low frequency vibrational peak, the so-called Boson peak and a quasielastic component, referred to the βfast process in the mode coupling theory (MCT).

The data are discussed in relation to the mode coupling theory for the liquid glass transition. In particular, the temperature evolution of the susceptibility height in the βfast region is compatible with a crossover temperature Tc ∼ 620 K which is also deduced from a power law temperature dependence of the structural relaxation timescale. As a secondary βslow process, observed by 31P NMR, decouples from the structural relaxation timescale also below 600 K, a real change in the dynamics seems to occur around Tc ∼ 620 K = 1.2 Tg in this non fragile glass Conning liquid.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

[1] Götze, W., Sjögren, L., Rep. Prog. Phys. 55, 241 (1992).Google Scholar
[2] Fujara, F., Petry, W., Euro. Phys. Lett. 4, 921 (1987).Google Scholar
[3] Knaak, W., Mezei, F., Farago, B., Euro. Phys. Lett. 7, 529 (1988).Google Scholar
[4] Frick, B., Farago, B., Richter, D., Phys. Rev. Lett. 64, 2921 (1990).Google Scholar
[5] Petry, W., Bartsch, E., Fujara, F., Kiebel, M., Sillescu, H., Farago, B., Z. Phys. B 83, 175 (1991).Google Scholar
[6] Li, G., Du, W.M., Chen, X.K., Cummins, H.Z., Tao, N.J., Phys. Rev. A 45, 3867 (1992).Google Scholar
[7] Du, W.M., Li, G., Cummins, H.Z., Fuchs, M., Toulouse, J., Knauss, L.A., Phys. Rev. E 49, 2192(1994).Google Scholar
[8] Steffen, W., Patkowski, A., Gläser, H., Meier, G., Fischer, E.W., Phys. Rev. E 49, 2992 (1994).Google Scholar
[9] Rössler, E., Sokolov, A.P., Kisliuk, A., Quitmann, D., Phys. Rev. B 49, 14967 (1994).Google Scholar
[10] Angell, C.A., in Relaxations in complex systems, Ngai, K.L. and Wright, G.B., éds (NRL Washington, 1984) p. 3.Google Scholar
[11] Sokolov, A.P., Rössler, E., Kisliuk, A., Quitmann, D., Phys. Rev. Lett. 71, 2062 (1993).Google Scholar
[12] Brodin, A., Börjesson, L., Engberg, D., Torell, L.M., Sokolov, A.P., Phys. Rev. B 53, 11511 (1996).Google Scholar
[13] Lebon, M.J., Dreyfus, C., Li, G., Aouadi, A., Cummins, H.Z., Pick, R.M., Phys. Rev. E 51, 4537 (1995).Google Scholar
[14] Patkowski, A., Steffen, W., Meier, G., Fischer, E.W., J. Non-Cryst. Solids 172–174, 52 (1994).Google Scholar
[15] Wuttke, J., Hernandez, J., Li, G., Coddens, G., Cummins, H.Z., Fujara, F., Petry, W., Sillescu, H., Phys. Rev. Lett. 72, 3052 (1994).Google Scholar
[16] Sokolov, A.P., Steffen, W., Rössler, E., Phys. Rev. E 52, 5105 (1995).Google Scholar
[17] Rufflé, B., Thesis, University of Rennes I (1996).Google Scholar
[18] Wäsche, R., Bruckner, R., Phys. Chem. Glasses 2, 80 (1986) and 2, 87 (1986).Google Scholar
[19] Rufflé, B., Beaufils, S., Gallier, J., Chem. Phys. 195, 339 (1995).Google Scholar
[20] Green, P., private communication.Google Scholar
[21] Green, P., Sidebottom, D., Brow, R., J. Non-Cryst. Solids 172–174, 1353 (1994).Google Scholar
[22] Rössler, E., Warschewske, U., Eiermann, P., Sokolov, A.P., Quitmann, D., J. non Cryst. Solids 172–174, 113 (1994).Google Scholar
[23] Rufflé, B., Beauflis, S., Delugeard, Y., Coddens, G., Etrillard, J., Toudic, B., Bertault, M., Even, J., Gallier, J., Ecolivet, C., MRS Symp. Proc. Series 407 (1996).Google Scholar