Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T18:49:45.290Z Has data issue: false hasContentIssue false

Dynamically recrystallized austenitic grain in a low carbon advanced ultra-high strength steel (A-UHSS) microalloyed with boron under hot deformation conditions

Published online by Cambridge University Press:  05 March 2013

I. Mejía
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U”, Ciudad Universitaria, Morelia, Michoacán, México.
E. García-Mora
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U”, Ciudad Universitaria, Morelia, Michoacán, México.
G. Altamirano
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U”, Ciudad Universitaria, Morelia, Michoacán, México.
A. Bedolla-Jacuinde
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U”, Ciudad Universitaria, Morelia, Michoacán, México.
J. M. Cabrera
Affiliation:
Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, ETSEIB – Universitat Politècnica de Catalunya. Av. Diagonal 647, Barcelona, Spain. Fundació CTM Centre Tecnològic, Av. de las Bases de Manresa, 1, Manresa, Spain.
Get access

Abstract

This research work studies the dynamically recrystallized austenitic grain size (Drec) in a new family of low carbon NiCrCuV advanced ultra-high strength steel (A-UHSS) microalloyed with boron under hot deformation conditions. For this purpose, uniaxial hot-compression tests are carried out in a low carbon A-UHSS microalloyed with different amounts of boron (14, 33, 82, 126 and 214 ppm) over a wide range of temperatures (950, 1000, 1050 and 1100°C) and constant true strain rates (10−3, 10−2 and 10−1 s−1). Deformed samples are prepared and chemically etched with a saturated aqueous picric acid solution at 80°C in order to reveal the Drec and examined by light optical (LOM) and scanning electron microscopy (SEM). The Drec is related to the Zener-Hollomon parameter (Z), and thereafter the Drec divided by Burger's vector (b) is related to the steady state stress (σss) divided by the shear modulus (µ) (Derby model). Results shown that the Drec in the current steels is fine (≈ 23 μm) and almost equiaxed, and the recrystallized grain size-flow stress relationship observed after of plastic deformation is consistent with the general formulation proposed by Derby. It is corroborated that boron additions to the current A-UHSS do not have meaningful influence on the Drec.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Committee on Automotive Applications, International Iron & Steel Institute, Advanced High Strength Steel Application Guidelines 1–9 (2006).Google Scholar
Jiang, H. T., Tang, D. and Mi, Z. L., J. Iron Steel Res. 19, 16 (2007).Google Scholar
Taylor, K. A. and Hansen, S. S., Metall. Mater. Trans. A21, 16971708 (1991).Google Scholar
Tameiro, H., Murata, M., Habu, R. and Nagumo, M., Trans. Iron Steel Inst. Jpn. 27, 120129 (1987).CrossRefGoogle Scholar
Morral, J. E. and Cameron, T. B., in Boron in Steel edited by Banerji, S. K. and Morral, J. E., (The Metallurgical Society of AIME, Milwaukee, USA, 1980) pp. 1932.Google Scholar
Habu, R., Miyata, M., Sekino, S. and Goda, S., Trans. Iron Steel Inst. Jpn. 18, 492500 (1978).Google Scholar
Werner, D. H., Boron and Boron Containing Steels, 2nd ed. (Verlag Stahl Eisen, Dusseldorf, 1995) pp. 1520.Google Scholar
Kapadia, B. M., J. Heat Treat. 5, 4153 (1987).CrossRefGoogle Scholar
Heckmann, C. J., Ormston, D., Grimpe, F., Hillenbrand, H. G. and Jansen, J. P., Ironmaking Steelmaking 32, 337341 (2005).CrossRefGoogle Scholar
Jun, H. J., Kang, J. S., Seo, D. H., Kang, K. B. and Park, C. G., Mater. Sci. Eng. A422, 157162 (2006).CrossRefGoogle Scholar
Kagechika, H., ISIJ Int. 47, 773794 (2007).CrossRefGoogle Scholar
Wang, X. M. and He, X. L., ISIJ Int. 42, 3846 (2002).CrossRefGoogle Scholar
Ohmori, Y. and Yamanaka, K., in Boron in Steels edited by Banerji, S. K. and Morral, J. E., (Metall. Soc. AIME, New York, 1980) pp. 4460.Google Scholar
Sakai, T. and Jonas, J.J., Acta Metall. 32, 189 (1984).CrossRefGoogle Scholar
Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, (Pergamon Press, Oxford, 1995).Google Scholar
Derby, B. and Ashby, M. F., Scripta Metall. 21, 879884 (1987).CrossRefGoogle Scholar
Derby, B., Acta Metall. 39, 955962 (1991).CrossRefGoogle Scholar
Derby, B., Scripta Metall. Mater. 27, 15811586 (1992).CrossRefGoogle Scholar
McQueen, H. J., Yue, S., Ryan, N. D. and Fry, E., J. Mater. Process. Technol. 53, 293310 (1995).CrossRefGoogle Scholar