Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:17:33.439Z Has data issue: false hasContentIssue false

Dynamical heterogeneities in glass-forming materials

Published online by Cambridge University Press:  10 February 2011

A. Heuer
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
S. C. Kuebler
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
U. Tracht
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
H. W. Spiess
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
K. Okún
Affiliation:
Institut für Physik, Johannes Gutenberg Universität Mainz, Staudinger Weg 7, D-55099 Mainz
Get access

Abstract

Cooperative dynamics around the glass transition leads to complex motional behavior of the individual molecules, resulting in non-exponential relaxation. The nature of this non-exponentiality is clarified theoretically as well as experimentally. The non-exponentiality may be due to heterogeneous relaxation (superposition of exponential processes with different rate constants) or homogeneous relaxation (identical intrinsically non-exponential processes). A precise definition of both limits is given. It is shown that the type of relaxation, i.e. to which degree heterogeneous and homogeneous contributions are present, reflects geometrical properties of the dynamics. The heterogeneous contribution can be further classified according to the timescale of fluctuations within the underlying distribution of relaxation rates, thereby introducing the concept of the rate memory. Determination of the type of relaxation and the rate memory essentially boils down to analysing the properties of multi-time correlation functions. Experimentally they are accessible by multidimensional NMR methods. Alternatively, they can be directly obtained from computer simulations. In order to clarify these concepts, the dynamics of polymers above the glass transition is analysed experimentally as well as numerically. The rotational dynamics of polymer segments turns out to be mainly heterogeneous with only small homogeneous contributions. Interestingly, the fluctuations within the heterogeneous distribution occur on the same timescale as the reorientation process itself.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jäckie, J., Rep. Prog. Phys. 49, 171 (1986).Google Scholar
[2] Austin, R.H. et al., Phys. Rev. Lett. 32, 403 (1974).Google Scholar
[3] Richert, R., Chem. Phys. Lett. 216, 223 (1993).Google Scholar
[4] Schmidt-Rohr, K. and Spiess, H.W., Phys. Rev. Lett. 66, 3020 (1991).Google Scholar
[5] Heuer, A., Wilhelm, M., Zimmermann, H., Spiess, H. W., Phys. Rev. Lett. 75, 2851 (1995).Google Scholar
[6] Heuer, A., Okun, K., to be printed in J. Chem. Phys. (1997).Google Scholar
[7] Heuer, A., to be printed in Phys. Rev. E (1997).Google Scholar
[8] Sillescu, H., J. Chem. Phys. 104, 4877 (1996).Google Scholar
[9] Kuebler, S.C., Heuer, A., Spiess, H.W., submitted to Phys. Rev. E.Google Scholar
[10] Schmidt-Rohr, K., Spiess, H.W., Multidimensional Solid-State NMR and Polymers, Academic Press, London (1994).Google Scholar
[11] Boehmer, R., Hinze, G., Diezemann, G., Geil, B., Sillescu, H., Europhys. Lett. 36, 55 (1996).Google Scholar
[12] Cicerone, M. T. and Ediger, M. D., J. Chem. Phys. 103, 5684 (1995).Google Scholar
[13] Schiener, B., Loidl, A., Böhmer, R., Chamberlin, R.V., Science 274, 752 (1996).Google Scholar
[14] Lovesley, S.W., Theory of Neutron Scattering from Condensed Matter, Oxford Univ. Press, Oxford (1984).Google Scholar
[15] Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics, Oxford Science Publications, Oxford (1986).Google Scholar
[16] Heuer, A., Kuebler, S.C., Tracht, U., Spiess, H.W., to be printed in Appl. Magn. Res.Google Scholar
[17] Carmesin, I. and Kremer, K., Macromolecules 21, 2819 (1988).Google Scholar
[18] Binder, K. (Ed.) Monte Carlo and Molecular Dynamics Simulations in Polymer Science, Oxford University Press, New York (1995).Google Scholar
[19] Okun, K., Wolfgardt, M., Baschnagel, J., Binder, K., to be printed in Macromolecules.Google Scholar
[20] Cicerone, M.T. and Ediger, M.D., J. Chem. Phys. 104, 7210 (1996).Google Scholar
[21] Chang, I., Fujara, F., Geil, B., Heuberger, G., Mangel, T., and Sillescu, H., J. Non-Cryst. Solids 172–174 248 (1994).Google Scholar