Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T04:19:29.161Z Has data issue: false hasContentIssue false

Dynamic Responses in Polymer-Clay Gels

Published online by Cambridge University Press:  01 February 2011

Elena Loizou
Affiliation:
Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803
Lionel Porcar
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
Paul Butler
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
Matthew Malwitz
Affiliation:
Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803
Gudrun Schmidt
Affiliation:
Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803
Get access

Abstract

The shear orientation of three polymer-clay gels has been investigated by means of small angle neutron scattering (SANS). The gels have the same polymer and clay concentrations but different polymer molecular weight. The polymer is adsorbed to the clay platelets. While long polymer chains can interconnect several platelets shorter polymer chains cannot. Although the polymer concentration is above c* the polymer chain length and cross linking between clay platelets strongly influence their shear orientation which leads to anisotropy in SANS. Our data suggest that the flow is strong enough to enhance and maintain a continuous increase in the shear orientation of the polymer clay gels only when the polymer chains are long enough to interconnect or strongly entangle between platelets.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Swenson, J.; Smalley, M. V.; Hatharasinghe, H. L. M.; Fragneto, G. Langmuir 2001, 17, 38133818.Google Scholar
(2) Nelson, A.; Cosgrove, T. Langmuir 2004, 20, 22982304.Google Scholar
(3) Schmidt, G.; Nakatani, A. I.; Butler, P. D.; Han, C. C. Macromolecules 2002, 35, 47254732.Google Scholar
(4) Ho, D. L.; Glinka, C. J. Chemistry of Materials 2003, 15, 13091312.Google Scholar
(5) Hakem, I. F.; Lal, J. Appl Phys a-Mater 2002, 74, S531S533.Google Scholar
(6) Hakem, I. F.; Lal, J. Europhys Lett 2003, 64, 204210.Google Scholar
(7) Rixman, M. A.; Dean, D.; Ortiz, C. Langmuir 2003, 19, 93579372.Google Scholar
(8) Mongondry, P.; Nicolai, T.; Tassin, J. F. Journal of Colloid and Interface Science 2004, 275, 191196.Google Scholar
(9) Schmidt, G.; Nakatani, A. I.; Butler, P. D.; Karim, A.; Han, C. C. Macromolecules 2000, 33, 72197222.Google Scholar
(10) Schmidt, G.; Nakatani, A. I.; Han, C. C. Rheol Acta 2002, 41, 4554.Google Scholar
(11) Zebrowski, J.; Prasad, V.; Zhang, W.; Walker, L. M.; Weitz, D. A. Colloid Surface A 2003, 213, 189197.Google Scholar
(12) Lal, J.; Auvray, L. Mol Cryst Liq Cryst 2001, 356, 503515.Google Scholar
(13) Lal, J.; Auvray, L. J Appl Crystallogr 2000, 33, 673676.Google Scholar
(14) Smalley, M. V.; Hatharasinghe, H. L. M.; Osborne, I.; Swenson, J.; King, S. M. Langmuir 2001, 17, 38003812.Google Scholar
(15) Glinka, C. J.; Barker, J. G.; Hammouda, B.; Krueger, S.; Moyer, J. J.; Orts, W. J. J Appl Crystallogr 1998, 31, 430445.Google Scholar
(16) Straty, G. C.; Hanley, H. J. M.; Glinka, C. J. J Stat Phys 1991, 62, 10151023.Google Scholar
(17) Callaghan, I. C.; Ottewill, R. H. Faraday Discuss 1974, 57, 110.Google Scholar
(18) Saunders, J. M.; Goodwin, J. W.; Richardson, R. M.; Vincent, B. J Phys Chem B 1999, 103, 92119218.Google Scholar
(19) Kroon, M.; Vos, W. L.; Wegdam, G. H. Phys Rev E 1998, 57, 19621970.Google Scholar