Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T13:06:20.145Z Has data issue: false hasContentIssue false

The Dynamic Properites of Confined Antiferroelectric Liquid Crystal Investigated By Photon Correlation Spectroscopy

Published online by Cambridge University Press:  10 February 2011

Yu.P. Panarin
Affiliation:
Department of Physics and Materials Research Center, PO BOX 23343, University of Puerto Rico, San Juan, PR 00931-3343, USA
C. Rosenblatr
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA
F.M. Aliev
Affiliation:
Department of Physics and Materials Research Center, PO BOX 23343, University of Puerto Rico, San Juan, PR 00931-3343, USA
Get access

Abstract

Dynamic light scattering was used to examine ferrielectric liquid crystalline phases in porous media. Whereas in larger pores (200 Å) ferrielectric phases were observed, they were not found in the smallest pores (200 Å). Additionally, the temperatures of SmC - SmA phase transition were found to be suppressed in the pores relative to bulk, while SmCA - SmCγ phase transition is not affected by the confinement. These observations have been explained by the structural aspects of antiferroelectric liquid crystalline materials in a confined geometry and show the importance of long range electrostatic interaction for existence of ferrielectric phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Beresnev, L.A., Blinov, L.M., Baikalov, V.A., Pozhidaev, E.P., Purvanetskas, G.V., Pavluchenko, A.I., Mol. Cryst. Liq. Cryst. 89, 327 (1982).Google Scholar
2 Chandani, A.D.L., Hagiwara, T., Suzuki, Y., Ouchi, Yu., Takezoe, H., Fukuda, A., Jpn. J. Appl. Phys. 27, L729 (1988).Google Scholar
3 Chandani, A.D.L., Ouchi, Yu., Takezoe, H., Fukuda, A., Terashima, K., Furukawa, K., Kishi, A., Jpn. J. Appl. Phys. 28, L1261 (1989).Google Scholar
4 Fukuda, A., Takanishi, Yo., Isozaki, T., Ishikawa, K., Takezoe, H., J.Mater.Chem. 4, 997 (1994).Google Scholar
5 Nishiyama, I. and Goodby, J.W., J. Mater. Chem. 2, 1015 (1992).Google Scholar
6 Bak, P., Bruinsma, R., Phys. Rev. B 21, 5297 (1980).Google Scholar
7 Panarin, Yu.P., Kalinovskaya, O.E. and Vij, J.K., Phys. Rev. E 55, 2354 (1997).Google Scholar
8 Li, J.-F., Shack, E.A., Yu, Yi-Kuo, Wang, Xin-Yi, Rosenblatt, C., Neubert, E., Keast, S.S., Gleeson, H., Jpn. J. Appl. Phys. 35, L1608 (1996).Google Scholar
9 Cepic, M., Heppke, G., Hollidt, J.-M., Lotzsch, D., Zeks, B., Ferroelectrics 147, 159 (1993).Google Scholar
10 Panarin, Yu.P., Kalinovskaya, O.E. and Vij, J.K., Appl. Phys. Lett. 72, 1667 (1998).Google Scholar
11 Musevic, I., Blinc, R., Zeks, B., Copic, M., Witterbrood, M.M., Rasing, Th., Orihara, H., Ishibashi, Yo., Phys. Rev. Lett. 71, 1180 (1993) and I. Musevic, A. Rastegar, M. Cepic, B. Zeks, M. Copic, D. Moro, G. Heppke, Phys. Rev. Lett. 77, 1769 (1996).Google Scholar
12 Hiraoka, K., Takezoe, H. and Fukuda, A.. Ferroelectrics, 147, 13 (1993).Google Scholar
13 Buivydas, M., Gouda, F., Lagerwall, S.T. and Stebler, B., Liq. Cryst. 18, 879 (1995).Google Scholar
14 Sun, H., Orihara, H., Ishibashi, Yo., J.Phys.Soc.Jap. 60, 4175 (1991) and H. Orihara, Ya. Igasaki and Yo. Ishibashi, Ferroelectrics 147, 67 (1993).Google Scholar
15 Tang, A. and Sprunt, S., Phys. Rev. E 57, 3050 (1998).Google Scholar
16 Bahr, Ch., Fliegner, D., Booth, C.J. and Goodby, J.W., Phys. Rev. E 51, 3823 (1995).Google Scholar
17 Demikhov, E., JETP Lett. 61, 977 (1996).Google Scholar