Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:29:00.116Z Has data issue: false hasContentIssue false

Dynamic Processing Characteristics for Melt Spinning

Published online by Cambridge University Press:  21 February 2011

R.P.I. Adler
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
S.C. Hsu
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
Get access

Abstract

Although during melt spinning the ongoing interactive thermal and mass transfer processes are affected by both materials properties and process variables, a simplified resolution for this complex system can be obtained by first identifying and characterizing those substrate and melt material combinations that provide useful, steady state production performance. A previously described standardized falling droplet/inclined plane test procedure that simulates the dynamic wetting and solidification behavior during melt spinning is being used to generate a range of phenomenological information for combination of melt (droplet) and substrate (plane). Real differences in dynamic wetting/solidification patterns are being correlated with melt spinning performance. Phenomenological and process characteristics from some melt spinning experiments for representative material combinations have been analyzed to verify the validity of these projected correlations as well as to provide complementary information about the interrelation of melt puddle/substrate dynamics with product dimensions and quality.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bondi, A., Chemical Reviews 52, 417445 (1953).10.1021/cr60162a002Google Scholar
2. Klein Wassink, R.J., J. Institute of Metals 95, 3843 (1967).Google Scholar
3. Adler, R.P.I. and Hsu, S.C., Proceedings of Third Conference on Rapid Solidification Processing: Principles and Technologies (December 1982).Google Scholar
4. Hitchcock, S.J., Carroll, N.T. and Nicholas, M.G., J. Mat. Sc. 16, 714732 (1981).10.1007/BF02402789Google Scholar
5. Oliver, J.F. and Mason, S.G., J. Mat. Sci 15, 431437 (1980).10.1007/PL00020077Google Scholar
6. Batra, N.K., See, J.B. and King, T.B., Metal Sci., 145–151 (1977).10.1179/msc.1977.11.5.145Google Scholar
7. Williams, C.A. and Jones, H., Mat. Sci. Eng. 19, 293297 (1975).10.1016/0025-5416(75)90119-6Google Scholar
8. Luborsky, F.E. and Liebermann, H.H., Mat. Sc. Eng. 49, 257261 (1981).10.1016/0025-5416(81)90120-8Google Scholar
9. Kroeger, D.M., Coghlan, W.A., Easton, D.S., Koch, C.C. and Scarborough, J.D., J. Appl. Phys. 3 14451453 (1982).10.1063/1.330639Google Scholar
10. Togano, K., Kumakura, H. and Tachikawa, K., Appl. Phys. Lett. 40 [1], 8486 (1982).10.1063/1.92897Google Scholar
11. Liebermann, H.H., Mat. Sci. Eng. 43, 203210 (1980).10.1016/0025-5416(80)90103-2Google Scholar
12. Hilzinger, H.R. and Hock, S., Proc. Conf. on Metallic Glasses: Science and Technology, Vol I, 7190, Hargitai, C., Bakonya, I. and Kemeny, T., eds. Central Research Institute for Physics, Budapest (1980).Google Scholar
13. Luborsky, F.E., Liebermann, H.H. and Walter, J.L., , Proc. Conf. on Metallic Glasses: Science and Technology, Vol I, 7190, Hargitai, C., Bakonya, I. and Kemeny, T., eds. Central Research Institute for Physics, Budapest (1980) Ref. 12, 203–214.Google Scholar
14. Hagiwara, M., Inone, A. and Masumota, T., Met. Trans. 12A, 10271031 (1981).10.1007/BF02643483Google Scholar
15. Agrawal, D.C., J. Mat. Sc. Lett. 1, 385386 (1982).10.1007/BF00724846Google Scholar
16. Vincent, J.H., Herbertson, J.G. and Davies, H.A., J. Mat. Sci. Lett. 2, 8890 (1983).10.1007/BF00725439Google Scholar
17. Hillman, H. and Hilzinger, H.R., Rapidly Quenched Materials I/l, Proc. 3rd International Conf. on Rapidly Quenched Metals, Vol 1, 22–29, B. Cantor ed., The Metals Society (July 1978).Google Scholar
18. Koster, U., Herold, U. and Hillenbrand, H-G, Scripta Met. 17, 867872 (1983).10.1016/0036-9748(83)90251-XGoogle Scholar
19. Charter, S.J.B., Mooney, D.R., Cheese, R. and Cantor, B., J. Mat. Sci. Lett. 15, 26582661 (1980).10.1007/BF00550774Google Scholar
20. Liebermann, H.H., J. Mat. Sci. Lett. 15, 26582661 (1980) Ref. 17, 34–40.Google Scholar
21. Mobley, C.E., Maringer, R.E. and Dillinger, L., Proc. International Conf. on Rapid Solidification Processing: Principles and Technologies, 223229, Mehrabian, R., Kear, B.H. and Cohen, M., eds., Claitors Press, Baton Rouge, LA (1977).Google Scholar
22. Huang, S.C. and Fiedler, H.C., Met. Trans. 12A, 11071111 (1981).10.1007/BF02643492Google Scholar
23. Matsuura, M., Kikuchi, M., Yagi, M. and Suzuki, K., Jap. J. Appl. Phys. 19 [9], 17811787 (1980).10.1143/JJAP.19.1781Google Scholar
24. Ray, R., Cline, C.F., Polk, D.E. and Davis, L.A., U.S. Patent No. 4,154,283 (May 1979).Google Scholar
25. Jones, H., Mat. Sci. Eng. 5, 118 (1969/1970).10.1016/0025-5416(69)90077-9Google Scholar
26. Hsu, S.C., Internal GTE Laboratories communication.Google Scholar
27. Anthony, T.R. and Cline, H.E., J. Appl. Phys. 50 [1], 245254 (1979).10.1063/1.325708Google Scholar
28. Liebermann, H.H., IEEE Trans. of Magnetics Mag 15 [6], 13931397 (1979).10.1109/TMAG.1979.1060429Google Scholar
29. Walter, J.L., IEEE Trans. of Magnetics Mag 15 [6], 13931397 (1979) Ref. 17, 30–33.Google Scholar
30. Pavuna, D., J. Mat. Sc. 16, 24192433 (1981).10.1007/BF01113578Google Scholar
31. Pavuna, D., J. Noncrystalline Solids 37, 133137 (1980).10.1016/0022-3093(80)90486-XGoogle Scholar
32. Liebermann, H.H., J. Mat. Sc. 15, 27712776 (1981).10.1007/BF00550545Google Scholar
33. Narasimhan, M.C., U.S. Patent No. 4,142,571 (March 1979).Google Scholar
34. Hilzinger, H.R., Krueger, K. and Hock, S., U.S. Patent No. 4,386,648 (June 1983).Google Scholar
35. Robertson, S.R., Gorsuch, T.J. and Adler, R.P.I., ibid Ref. 21, 188207 Google Scholar