Published online by Cambridge University Press: 16 February 2011
A multiprojectile version of TRIDYN has been employed to simulate ion-induced effects which occur during ion-beam assisted deposition (IBAD) or plasma-assisted chemical vapour deposition (PECVD) of thin films.
Simulations of the formation of boron nitride films deposited from evaporated boron and energetic nitrogen show an excellent agreement with experimental results for nitrogen concentrations below the stoichiometric limit. For high N/B flux ratios, non-collisional mechanisms (ion-induced outdiffusion, surface trapping of outdiffusing nitrogen) have been included in the simulations, again producing good agreement with the experimental results.
Simulations of the PECVD of hydrocarbon films suffer from the poor knowledge of the neutral and ionic fluxes which contribute to the growth of the layers. Nevertheless, the composition of the films and its dependence on ion energy can be predicted with satisfactory agreement with experimental findings. A simple model of preferential displacement yields a reasonable average ratio of sp2 and sp3 coordinated carbon atoms. The energy dependence of the bond ratio is in contradiction to experimental observation.