Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:23:46.252Z Has data issue: false hasContentIssue false

Dynamic Monte Carlo Simulation of Ion Beam and Plasma Techniques

Published online by Cambridge University Press:  16 February 2011

W. Möller*
Affiliation:
Max-Planck-Institut für Plasmaphysik, EURATOM-Association, W-8046 Garching, Germany
Get access

Abstract

A multiprojectile version of TRIDYN has been employed to simulate ion-induced effects which occur during ion-beam assisted deposition (IBAD) or plasma-assisted chemical vapour deposition (PECVD) of thin films.

Simulations of the formation of boron nitride films deposited from evaporated boron and energetic nitrogen show an excellent agreement with experimental results for nitrogen concentrations below the stoichiometric limit. For high N/B flux ratios, non-collisional mechanisms (ion-induced outdiffusion, surface trapping of outdiffusing nitrogen) have been included in the simulations, again producing good agreement with the experimental results.

Simulations of the PECVD of hydrocarbon films suffer from the poor knowledge of the neutral and ionic fluxes which contribute to the growth of the layers. Nevertheless, the composition of the films and its dependence on ion energy can be predicted with satisfactory agreement with experimental findings. A simple model of preferential displacement yields a reasonable average ratio of sp2 and sp3 coordinated carbon atoms. The energy dependence of the bond ratio is in contradiction to experimental observation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harper, J.M.E., in Plasma Surface Interactions and Processing of Materials, edited by Auciello, O., Gras-Marti, A., Valles-Abarca, J.A., and Flamm, D.L., NATO ASI Series E, Vo1.176 (Kluwer Academic Publishers, Dordrecht, 1990), p.251; J.E. Greene, S.A. Barnett, J.-E. Sundgren, and A. Rockett, in Plasma Surface Interactions and Processing of Materials, edited by O. Auciello, A. Gras-Marti, J.A. Valles-Abarca, and D.L. Flamm, NATO ASI Series E, Vo1.176 (Kluwer Academic Publishers, Dordrecht, 1990),, p.281.Google Scholar
2. Mattox, D.M., J.Vac.Sci.Technol.A 7,1105(1989).Google Scholar
3. Rossnagel, S.M. and Cuomo, J.J., Thin Sol.Films 171,143(1989).Google Scholar
4. Wolf, G.K., Nucl.Instrum.Meth.B 46,369(1990).Google Scholar
5. Oechsner, H., Thin Sol.Films 175,119(1989).Google Scholar
6. Carter, G., Katardjiev, I.V., and Nobes, M.J., Vacuum 39,571(1989).Google Scholar
7. VanVechten, D., Hubler, G.K., Donovan, E.P., and Correll, F.D., J.Vac.Sci.Technol.A 8,821(1990).Google Scholar
8. Hubler, G.K., Carosella, C.A., Donovan, E.P., VanVechten, D.. Bassel, R.H., Andreadis, T.D., Rosen, M., and Mueller, G.P., Nucl.Instrum.Meth.B 46,384(1990).Google Scholar
9. Möller, W., in Materials Modification by High-Fluence Ion Beams, edited by Kelly, R. and daSilva, M.F., NATO ASI Series E, Vo1.155 (Kluwer Academic Publishers, Dordrecht, 1989), p. 151.Google Scholar
10. Müller, K.-H., Appl.Phys.A. 40,209(1986); J.Appl.Phys. 59,2803(1986).Google Scholar
11. J., Zhou, Y., Chen, X., Liu, and S., Zou, Nucl.Instrum.Meth.B 39,182(1989).Google Scholar
12. Möller, W., Bouchier, D., Burat, O., and Stambouli, V., Surf.Coat.Technol. (in press).Google Scholar
13. Möller, W. and Eckstein, W., Nucl.Instrum.Meth.B 2,814(1984).Google Scholar
14. Möller, W., Eckstein, W., and Biersack, J.P., Comp.Phys.Comm. 51,355(1988).Google Scholar
15. Eckstein, W. and Biersack, J.P., Appl.Phys.A 37,95(1985).Google Scholar
16. Biersack, J.P. and Haggmark, L.G., Nucl.Instrum.Meth. 174,257(1980).Google Scholar
17. Wilson, W.D., Haggmark, L.G., and Biersack, J.P., Phys.Rev.B 15,2458(1977).Google Scholar
18. Lindhard, J. and Scharff, M., Dan, K..Vidensk.Selsk.Mat.Fys.Medd. 27,No.15(1953).Google Scholar
19. Oen, O.S. and Robinson, M.T., Nucl.Instrum.Meth. 132,647(1976).Google Scholar
20. Burat, O., Bouchier, D., Stambouli, V., and Gautherin, G., J.Appl.Phys. 68,2780(1990).Google Scholar
21. Angus, J.C., Koidl, P., and Domitz, S., in Plasma Deposited Thin Films, edited by Mort, J. and Jansen, F. (CRC Press, Boca Rayton, 1986), p.89.Google Scholar
22. Koidl, P. and Oelhafen, P. (Eds.), Amorphous Hydrogenated Carbon Films, E-MRS Symp. Proc. Vol. XVII (Les Editions de Physique, Les Ulis, 1987).Google Scholar
23. Pouch, J.J. and Alterovitz, S.A. (Eds.), Properties and Characterization of Amorphous Carbon Films, Mat.Sci.Forum 52&53(1990).Google Scholar
24. öller, W., in: Diamond and Diamond-Like Thin Films and Coatings, Proc. of the NATO ASI at Castelvecchio Pascoli, Italy (1990) (in press).Google Scholar
25. Moller, W. and Scherzer, B.M.U., Appl.Phys.Lett. 50,1870(1987); J.Appl.Phys. 64,4860(1988).Google Scholar
26. Sander, P., Altebockwinkel, M., Storm, W., Wiedmann, L., and Benninghoven, A., J.Vac.Sci.Technol.B 7,517(1989).Google Scholar
27. Baumann, H., Rupp, T., Bethge, K., Koidl, P., and Wild, C., in Ref.22, p.343.Google Scholar
28. Lifshitz, Y., Kasi, S.R., Rabalais, J.W., and Eckstein, W., Phys.Rev.B 41,10468(1990).Google Scholar
29. Aisenberg, S. and Kimock, F.M., in Ref.3, p.1.Google Scholar
30. Robertson, J., in: Diamond and Diamond-Like Thin Films and Coatings, Proc. of the NATO ASI at Castelvecchio Pascoli, Italy (1990) (in press).Google Scholar
31. Zou, J.W., Reichelt, K., Schmidt, K., and Dischler, B., J.Appl.Phys. 65,3914(1989).Google Scholar
32. Kleber, R., Dworschak, W., Gerber, J., Krüger, A., Jung, K., Ehrhardt, H., Schulze, S., Mühling, I., Deutschmann, S., Scharff, W., Engelke, F., and Metz, H., in Proc.Int.Conf. on Plasma Surface Engineering, Garmisch-Partenkirchen (1990) (in press).Google Scholar
33. Tamor, M.A., Vassell, W.C., and Carduner, K.R., Appl.Phys. 58,592(1991).Google Scholar