Published online by Cambridge University Press: 25 February 2011
Analysis of dynamic development of heating patterns during microwave sintering provides vital information on the evolution of the heating process and the contributions from the various components in a complex sintering arrangement (picket fence) to the heat-transfer mechanism. Measured heating patterns often provide overall effects, and it is difficult to isolate and control the various contributions. To this end, results from numerical simulation may be significant.
In this paper we describe a thermal model that calculates the temperature distribution in ceramic samples and insulation under realistic sintering conditions. The calculation process involves a two-step procedure. The first step is to calculate the microwave power deposition in the sample and surrounding insulation. 3D FDTD calculations described in a companion paper are used for this purpose [1] The other step involves calculation of the temperature distribution using a 3D finite-difference heat-transfer program developed in our department.Results illustrating the effect of thickness of insulation and the placement of SiC rods in picket-fence arrangement are presented. Also, the need to measure additional parameters such as thermal conductivity and density of green samples as a function of temperature during sintering is discussed.